
Page 1 of 77 2022019

Summary Sheet

If you have ever been on an aircraft, it is plane to see how slow boarding and disembarking is. For
many this is insignificant, but for an airline company saving even a couple of minutes for each flight’s
boarding and disembarking will result in huge savings when considering the tens of thousands of
airports and flights that occur each time. For an industry still struggling from the collapse of the
tourism industry due to COVID-19, optimal and robust boarding and disembarking methods must
be found.

To achieve this we developed two models, one for each of boarding and disembarking. As boarding
and disembarking planes is an inherently stochastic process, we created a computational simulation
over a pure mathematical model. Thus, we could better account for variable human behaviours and
scenarios, giving a much more accurate distribution of data. Whilst many models already exist for
this purpose, a key point of difference of our model is a greater consideration to several aspects of
human behaviour. Namely, disobedience of boarding instructions, and travelling in groups.

We first modelled the Narrow Body Aircraft, simulating different boarding and disembarking meth-
ods using a Monte Carlo method. To create different boarding methods, we generated a randomized
queue of passengers in the order that the boarding method prescribes (accounting for disobedient
people) which could then be simulated boarding. Over many simulations, we could obtain an accu-
rate average for the total time taken, allowing us to determine the most optimal method (least time
taken). We also proposed two additional methods and ran them through the same simulations.

To simulate disembarking, we gave all seated passengers a priority value. Disembarking was car-
ried out by moving passengers towards the exit at different rates dependent on their priority level.
By altering the priority values we could carry out different disembarking methods and account for
disobedience.

Both models implemented real-world data for factors such as moving speeds. This was to ensure the
highest accuracy of our resulting times. We comprehensively analysed the results of these simulations,
determining the effect of altering variables such as the number of people who disobey instructions,
and varying numbers of carry-on baggage.

We adapted our models to two other passenger aircraft, the Flying Wing and the Two-Entrance
Two-Aisle, and applied the most optimal boarding and disembarking methods used on the Narrow
Body plane. Furthermore, we considered the effect of a reduced capacity of the passenger aircraft, a
relevant deliberation in the age of COVID-19.

Overall, it was found that for boarding, one of our own proposed methods – boarding in the or-
der of window, middle and aisle seats with the allowance of groups to board together – was on the
whole the most optimal over the three aircraft. The optimal disembarking method was one in which
the plane was unloaded from the back of the craft to the front.

Page 2 of 77 2022019

Contents

1 Introduction 3
1.1 Background . 3
1.2 Problem Restatement . 3
1.3 Basic Assumptions . 3
1.4 Variables and Factors . 4

2 Narrow-Body Boarding 4
2.1 Boarding Model Situation . 4

2.1.1 Carry-on Baggage Delay . 5
2.1.2 Shifting Seats Delay . 7

2.2 Boarding Queue Generation . 7
2.2.1 Disobedience Coefficient . 8
2.2.2 Groups of People . 8
2.2.3 Bag Coefficient . 8

2.3 Modelled Results for Provided Boarding Methods . 8
2.3.1 Random Boarding . 9
2.3.2 Boarding by Section . 9
2.3.3 Boarding by Seat (WMA/WilMA) . 10
2.3.4 Sensitivity Analysis of Provided Boarding Methods 10

2.4 Modelled Results for Other Boarding Methods . 12
2.4.1 Modified Steffen Method . 12
2.4.2 Prioritised Groups . 12
2.4.3 Modified Boarding by Seats (WMA) . 13

2.5 Optimal Boarding Method . 13

3 Narrow-Body Disembarking 14
3.1 Generation of Priority Map . 14
3.2 Logic of Disembarking . 16
3.3 Time to Unstow Bags . 16
3.4 Optimal Disembarking Method . 16

4 Extension of Model to Other Aircraft 18
4.1 Flying Wing Aircraft . 18

4.1.1 Flying Wing Boarding . 18
4.1.2 Flying Wing Disembarking . 19

4.2 Two-Entrance Two-Aisle Aircraft . 20
4.2.1 Two-Entrance Two-Aisle Boarding . 20
4.2.2 Two-Entrance Two-Aisle Disembarking . 21

5 Pandemic Capacity Decrease 21
5.1 Boarding . 21
5.2 Disembarking . 22

6 Evaluation of Models 22
6.1 Strengths . 22
6.2 Limitations . 22

7 Appendices 24

Page 3 of 77 2022019

1 Introduction

1.1 Background

As society becomes increasingly globalised, the importance of air travel grows. Flight numbers
before the COVID-19 pandemic were at an all-time high, and they have doubled in the past 20 years.
Following a temporary disruption due to COVID-19, this trend appears ready to continue it’s steady
upwards climb[1]. This has the consequence that small optimisation changes can result in enormous
savings for both airline companies, passengers, and airports in terms of usable time wasted. Some of
the biggest bottlenecks for plane turnaround are boarding and disembarking efficiency - that is, the
way that passengers are loaded to and unloaded from planes[2]. There exist a variety of methods for
these processes, each with varying theoretical and practical efficacies. As such, this report presents
our developed model and simulates different onboarding and embarking methods for various aircraft
models.

1.2 Problem Restatement

To ascertain the efficiency of different systems, we will develop two models with allowances for
practical considerations that can be adapted to a variety of conditions.

1. Develop a plane boarding model and disembarking model which allows us to test the efficiency
of different boarding/disembarking methods on a narrow-body plane

2. Adapt the models to test on different aircraft types (i.e. Flying Wing and Two-Entrance
Two-Aisle) and also the effects of limited capacity flights due to COVID-19

3. Write a one-page letter to an airline executive that explains our results and its benefits to their
airline

1.3 Basic Assumptions

Our initial model uses a few basic assumptions. The aircraft is to be divided into cells which one
person can occupy at a time. The aisle space between rows and each seat is represented by one cell.

• Only one person can comfortably walk in an aisle cell
Justification: Although aisle width varies by aircraft, a reasonable estimate is 0.50m wide[3].
On average, men have longer shoulder width than women, at 0.41m wide[4] and passengers
are often carrying luggage which increases their width requirement. Thus, it is reasonable to
assume that only one person can walk down the aisle at a time, with passengers both being
laden with bags, respecting personal space, and potentially being weary of close contact due to
infection risks. As such, when a passenger is loading their carry-on luggage into an overhead
bin, the aisle is also blocked.

• Seated passengers block passengers who wish to sit further down in the same row
Justification: The passenger cannot leap over the seated passenger. Not only is this valid
from a social etiquette perspective, but in the provided aircraft designs, legroom looks to be
minimal so it is physically unfeasible too.

• When a seat passenger leaves a row to make room for an incoming passenger, they are momen-
tarily able to inhabit the same aisle cell
Justification: As the passenger will want to reach their seat, they will not mind temporarily
having reduced room as they move into their seat cell.

Page 4 of 77 2022019

• Time to walk one aisle cell is constant
Justification: This time was obtained by analysing a sample of n = 10 YouTube videos of
people walking down aisles on flights, by counting the number of frames elapsed when each
individual walks one aisle cell, and the playback details of the YouTube videos (typically either
60 or 30 frames per second - these are listed in the references). Using this, we can determine
that the time to move one cell down the aisle is given by 1.05s.

1.4 Variables and Factors

Several variables were used in our model to account for real-life phenomena. Some of these will be
expanded on in later sections.

A bag coefficient was used to give a weighted probability of each passenger having carry-on
luggage that they would want to stow in an overhead locker.

Another variable was the number of groups. Passenger populations are not homogenous; often
they contain inseparable groups such as families of varying sizes. Members of these groups were
seated adjacently in the same row and entered the plane in adjacent cells too. Upon entering the
plane, it was assumed that groups would be in an order that would minimize blockage when getting
into seats (i.e. in the order window, middle, aisle). This is reasonable as groups would want to
minimize their own inconvenience and could communicate with each other to align themselves in this
order. This factor has an appreciable effect on different boarding methods and was rarely investigated
with any depth in any of the papers found in our literature review.

A disobedience coefficient was introduced to model the common scenario of passengers not
following instructions. In these cases, a passenger (or group) would enter the plane in a different
boarding category than ordered, which could be caused by ignorance, impatience or lateness. This,
much like the number of groups, was rarely considered in an in-depth manner in the existing
literature but would still significantly affect boarding times.

2 Narrow-Body Boarding

For both our models, we simulated the entire boarding/disembarking process. Keeping track of time
during this simulation, we could calculate total boarding/disembarking time. Python 3.9 was used
for this simulation.

2.1 Boarding Model Situation

To model boarding, we designed an algorithm that would see all passengers make their way to their
assigned seat. Once on the plane after waiting in the boarding queue, passengers would follow a rigid
set of rules, and variation would naturally occur due to variation in input: passengers had randomly
generated differing numbers of baggage, and orders in which they entered the plane. Different
boarding methods would be accounted for in the order of which passengers in prioritized seats entered
the plane.A simplified process of the model as experienced by a passenger is best represented in the
flow chart in Fig 2.1. This logic is easily followed and provides a robust algorithm that passengers
can follow.

Page 5 of 77 2022019

Figure 2.1: The logic behind passenger movement in the narrow-body aircraft

In the model this is simulated for all passengers simultaneously, as any passenger in the aisle
could be at any step at any time. This is done by repetitively iterating down the aisle, starting from
the passenger furthest from the entrance. Their state is determined, and an action done accordingly.
Since it is assumed that there is a steady flow rate into the plane, if the first position in the aisle is
ever empty, then the next passenger in the boarding queue occupies this space – ‘passenger enters
plane’ in the flow chart. A key part of this simulation is the concept of an internal clock. Each
passenger has this attribute, which counts down the real time (e.g., 1 sec) until they can complete an
action. For example, the time to progress one cell forward is constant. The section of the flow chart
enclosed in red is implemented in the simulation by calculating the total time that these actions would
take and increasing the passenger’s internal clock until this time is achieved, whereupon they can
undertake their action. A visualisation tool was used on the code, allowing us to generate real-time
visualisations of the simulations (see Fig 2.2, and the code in Appendix NUMBERHERE).

Figure 2.2: Visualisation tool in use on the narrow aircraft. Note that the aisle is currently blocked
by a passenger in row 9.

In the following sections, we derive how these times are calculated.

2.1.1 Carry-on Baggage Delay

In airplanes it is commonplace that passengers load their carry-on luggage into the overhead bins.
The aisle is blocked for the duration of this process. To account for this, the following piecewise
function was developed to model the time that each passenger blocks the aisle while loading carry-on
bags (which impedes the flow of passengers down the aisle).

Page 6 of 77 2022019

Variable Description

Tbags Time that the main aisle is blocked due to carry-on luggage loading

nbags Number of carry-on bags to be stored in the overhead bins

nbins Number of carry-on bags present in overhead bins before storing

nmax Maximum number of bags overhead bins can hold

C0, C1, C2 Scaling constants depending on the value of nmax

Tbags(nbags, nbins, nmax) =



0 if nbags = 0

C0

1− C1nbins/nmax

if nbags = 1

C0

1− C1nbins/nmax

+
C2

1− (nbins + 1)/nmax

if nbags = 2

(1)

The model only considers nbags ∈ {0, 1, 2} since it is assumed that the maximum number of carry-
on items that each passenger is permitted to have is nbags = 2. Many airlines, including Air New
Zealand[5], impose this maximum (even for business class passengers). The benefit of this equation is
in its generality; its many parameters allow for precise calibration to produce more accurate results,
especially for different aircraft models. For the purposes of modelling the narrow plane, we assumed
each row of three had an overhead bin with capacity nmax = 6 since each passenger in the row could
carry at most nbags = 2. This is assuming not all the stowed items are full size suitcases: some
carry-ons are likely to be smaller items such as handbags/tote bags. The passengers will be able to
fit more of these into an overhead bin, thus the larger capacity. Then, taking nmax = 6, the values
of C0, C1, C2 were calibrated to be 4, 0.8, and 2.25 respectively. This yields the following equation,
which was implemented into our model.

Tbags(nbags, nbins, 6) =



0 if nbags = 0

4

1− 0.8nbins/6
if nbags = 1

4

1− 0.8nbins/6
+

2.25

1− (nbins + 1)/6
if nbags = 2

(2)

The function is piecewise to easily account for the varying number of bags that each passenger
carries. Passengers carrying no bags do not take time to stow, while those stowing two bags take
longer than those stowing one bag (thus the added term). Another consideration is that the function
is designed to increase when there is less space in the overhead bin (i.e., when nbins/nmax is large)
as passengers will have to find space and squeeze their bags in, increasing aisle blockage time. For
instance, if a passenger has one bag and there are already 1/6 bags in the overhead bin, then
Tbags(1, 1, 6) = 4.6. However, if the compartment is almost full with 5/6 bags, then Tbags(1, 5, 6) = 12
as the passenger will have to locate a space and squeeze their carry-on in.

Page 7 of 77 2022019

2.1.2 Shifting Seats Delay

Another large source of aisle blockage arises from the common situation where a passenger tries
to reach their seat in a row but is blocked by a seated passenger. Before the passenger can reach
their seat, the seated individual must stand up and move out to the aisle to allow the passenger to
reach their seat, before sliding back. This process is lengthy and will impede the flow of passengers
down the main aisle. This is furthermore complicated by the fact that there are many variations
on this scenario, with different seated passenger positions and passenger seat goals, which will have
appreciably different delay times. To model the additional time needed for these different shuffles,
Eq. 3 was derived.

Variable Description

Tshuffle Time that the main aisle is blocked

tup Time taken for a seated passenger to stand up

ts Time taken for a passenger to travel the width of a seat

f The index of the furthest seat that blocks the passenger’s seat

ns The number of seated passengers that block the passenger’s seat

Let the seats be indexed such that the aisle seat has index 1 and the index of each consecutive
seat increases until the window seat. Since we are only concerned with total time that the aisle is
blocked, only the time that passengers are occupying the aisle needs to be kept track of. First, the
person seated furthest from the aisle stands and moves into the aisle (tup+ fts). Then the passenger
moves into the row (ts), and finally the previously seated passengers move back into the row (nsts).

Tshuffle(f, ns) = tup + fts + ts + nsts

= tup + ts(f + 1 + ns) (3)

Following this derivation, we state that the equation makes the following assumptions:

• The seated passengers notice the passenger once they are standing next to the row

• All the required seated passengers stand up at the same time and begin to exit the row

• That two people can inhabit the aisle cell adjacent to the row (assumed earlier)

• Once the passenger has entered the row, the previously seated passengers begin moving back
into the aisle, following right behind the passenger in the correct order

These assumptions are sufficiently realistic to generate results which closely model reality.

2.2 Boarding Queue Generation

A queue of passengers with assigned seats was generated to move into the aisle. By altering the
order of the passengers in this queue, we could simulate different boarding methods. For example,
we could place everyone in the queue in order of aft, middle, front. Within these sub-sections of
the queue, the order was randomized each trial to further increase realism. At this point, we also
assigned each passenger a discrete number of baggage, either 0, 1, or 2. This was done by utilizing
a weighted probability. Overall, we implemented algorithms to create boarding queues for all the
required boarding methods, as well as several others. However, to increase realism of the model, we
added additional variation within these.

Page 8 of 77 2022019

2.2.1 Disobedience Coefficient

Undoubtedly, there will be passengers who do not follow the rules of whichever boarding method is
in place. This is due to two main reasons: impatience (boarding before they are called), and lateness
(being late to their boarding time). These passengers are rarely accounted for in the literature, yet
they have an appreciable effect on boarding times. To include this in our model, we introduced the
disobedience coefficient, ψ, the probability of any passenger in the queue to not follow the desired
boarding method. For instance, in a sectional boarding method, a passenger sitting in the aft section
of the plane would have a ψ chance of boarding with a different group (and given that they do, a
50% chance for either group). Initially this was fixed at ψ = 0.3; online studies found that 30% of
passengers are late for their flights , and we thought that this was a reasonable number that would
be impatient as well.

2.2.2 Groups of People

Another important consideration in the model is the existence of groups of people that board together.
Families, couples, and the like are present in high concentration on flights and are often seated
together. Importantly and as discussed previously, they board together and enter the queue in the
way in which they would enter seat rows, decreasing total boarding time. To account for this in our
model, when a passenger in queue is generated, there is a weighted probability that they will be in
a group of 1, 2 or 3. Groups of 1 are simply regular passengers. Groups of 2 or 3 are adjacent in
the boarding queue and are seated in adjacent cells. Groups of 4 or larger were excluded since the
aircraft only allowed a maximum of 3 to sit together in a row, effectively meaning a group above 3
can be split into two groups. Initially, the weighted probabilities of a passenger being in a group of
1, 2 or 3 was set at (20,80,10).
We also considered the effect of the disobedience coefficient on groups. We initially considered a
group to be disobedient if any members of the group of size n were disobedient. However, as (1−ψ)
is the probability that a passenger is obedient, then (1−ψ)n is the probability that the entire group
is obedient. Hence, 1 − (1 − ψ)n is the probability that the group would be disobedient. For a ψ
value of 0.3, this would create a disobedience probability of 0.51 for groups of 2 and 0.657 for groups
of 3. We thought that this was unrealistically high, and instead determined that the disobedience
probability would be ψ for the entire group.

2.2.3 Bag Coefficient

A key stochastic variable in this model is the number of carry-on bags that any given passenger
will stow in the overhead lockers. Just as in real plane boarding, this is clearly prone to variation.
To account for this, we introduced another 3-tuple in the code to give a weighted probability of a
passenger stowing either 0, 1 or 2 bags. Unfortunately, there was a lack of available data on average
passenger bag count online. As such, further analysis of the previous YouTube videos allowed us to
tentatively obtain an estimate of (20,80,10). However, in the sensitivity analyses later this value was
changed appropriately, allowing us to determine the validity of this initial assumption.

2.3 Modelled Results for Provided Boarding Methods

The three provided methods for boarding were random boarding, boarding by section, and boarding
by seat. It was assumed that boarding by seat would make no allowances for groups of people.
However, the other methods were modelled using groups.

Page 9 of 77 2022019

2.3.1 Random Boarding

At first glance, the method of random boarding seems crude and inefficient. However, simulations
run on our model reveal that the random method is reasonably effective. It took on average 689.4
seconds to finish boarding the plane, with a 5th percentile of 626.7s and a 95th percentile of 755.7s.
This means that 90% of the values fall in this range of 129 seconds.

Figure 2.3: Monte Carlo simulation graph of the random boarding method

2.3.2 Boarding by Section

The second supplied method was to board the plane in sections. Boarding by aft (rows 23-33), middle
(12-22) and front (rows 1-11) sections in varying order produced different results in our model. A
set of results for all possible variations can be seen in the bar chart in Fig 6.1, but we discuss only
the most and least optimal methods.

Figure 2.4: Visualised boarding by section starting with the aft. Note the disobedient passengers
who have already seated themselves in the front and middle sections.

Figure 2.5: Monte Carlo simulation graphs of boarding front, middle, aft and aft, middle front

Page 10 of 77 2022019

After running 10,000 trials, we found that the most optimal order of boarding was aft, middle,
front (see breakdown in Appendix A). The mean time taken to fill up the narrow body airplane
was 768.8 seconds, with 90% of the times falling between 696.8s and 845.6s (spread of 148.8s). In
comparison to this, it took on average 870.4 seconds to board using the front, middle, aft method,
with 90% of the times between 800.1s and 950.9s (spread of 150.8 seconds). This difference can be
explained by considering Fig 2.6. On the left visualisation, the back fills first and so there is room
to queue in the aisle, while on the right when the front is boarded first, the queue extends outside of
the plane. Interestingly, this common method for boarding the plane is actually significantly slower
than a random boarding order. However, the ability to simplistically split boarding into groups of
people is valuable for airline companies, as it provides structure as to who should line up when. In
the random boarding method, everyone is called to line up at once. This may potentially cause large
queues and waste passengers time queuing in a long line.

Figure 2.6: Visualisation of boarding by section, with AMF on the left and FMA on the right. Note
the disobedience passengers sitting in the incorrect sections.

2.3.3 Boarding by Seat (WMA/WilMA)

The plane can also be boarded by seat type. This method allows all passengers with a window seat
to board first, then middle, and finally aisle seats. Initially it seems like an ideal boarding method as
it is relatively fast, with a mean boarding time 519.1 seconds. It is consistent too, with 90% of the
values within 85 seconds of each other (5th percentile 479.1s, 95th percentile 564.1s). Not only this,
but it is also straightforward to implement, with 3 easily definable groups of passengers. However, it
splits groups. This is effectively unworkable in practice due to the separation of groups, particularly
in the case of children and elderly.

Figure 2.7: Monte Carlo simulation graph of boarding by seat without groups

2.3.4 Sensitivity Analysis of Provided Boarding Methods

We now perform a sensitivity analysis on the provided boarding methods.

Page 11 of 77 2022019

Figure 2.8: Sensitivity analysis of the disobedience coefficient on the interval 0 ≤ ψ ≤ 1

Fig 2.8 shows the impact of changing the disobedience coefficient on the time taken to board, for
the three given models. The effect of changing the disobedience coefficient for the section boarding
was most interesting. As the number of people not following the prescribed method increased, the
boarding method trended towards random. This meant the time taken decreased as random boarding
is faster than section boarding. At a disobedience coefficient of ψ = 0.5, the boarding method is
effectively random, thus the times are equivalent. However, as more people decide not to board
with their prescribed group, the time starts to increase again. This is due to the boarding becoming
‘ordered’ again by section, which is slower than a random boarding method. This behaviour from
the boarding by section method is ideal for airline companies, as a realistic extent of disobedience
will help their boarding times. The random boarding method is completely insensitive to changes
in disobedience, as there are no rules to disobey. The boarding by seat method without groups
is the fastest boarding method provided, but it is also the method most impacted by changes in
disobedience. This is potentially undesirable behaviour in a boarding method for airline companies,
however under all reasonable values of the disobedience coefficient, boarding by seat is the fastest
boarding method.

Figure 2.9: Sensitivity analysis of provided boarding methods by scaling a part of the bag
coefficient.

Changing the bag coefficient changes the number of people without bags. The higher the coef-
ficient, the higher the number of people without bags. The relevant time relating to bag numbers
is the time spent in the aisle stowing. As such, only the number of bags stowed is pertinent to this
model. Therefore, our variation of the bag coefficient (integers from 0 to 180) is effective at describing
the impact of all plausible variations in bag numbers and bag stowage on the time take to board an

Page 12 of 77 2022019

aircraft. From this analysis, we found that the three recommended methods are of equal sensitivity
to variations in the bag coefficient. This is shown by the identical shape of the curves.

2.4 Modelled Results for Other Boarding Methods

2.4.1 Modified Steffen Method

The Steffen method is a plane boarding method proposed by Jason Steffen in 2008 which is suggested
to be the method that produces the optimal plane boarding time[6]. However, this method is highly
theoretical. It relies on the unrealistic assumption that passengers are efficient and highly organised.
Instead, we present the modified version of the Steffen method which has a slightly larger grounding
in reality. This method boards even numbered rows on the right hand side, then even rows on the
left, then odd rows on the right, to odd rows on the left. This was almost the fastest boarding method
we tested, with a mean time to board of 647.05 seconds. The 5th percentile was 595.3 seconds, and
the 95th percentile was 696.5 seconds (a spread of 101.2 seconds).

Figure 2.10: Monte Carlo simulation graph of the modified Steffen method

2.4.2 Prioritised Groups

In this method, passengers are classified as having one of two classes of walking speeds: normal and
slow. This removes the need for our initial assumption that walking speed is relatively constant
and allows us to test the validity of this assumption. Many airlines allow prioritised groups such
as families with young children, disabled and elderly people to board first. The passengers in these
prioritised groups are classified as having slow walking speed. We run this method through our model
to determine its efficacy.

Figure 2.11: Monte Carlo simulation graph of the prioritised group boarding method

Page 13 of 77 2022019

2.4.3 Modified Boarding by Seats (WMA)

As mentioned, the WMA has some serious drawbacks, particularly in regard to the splitting of
groups. To overcome this, we devised a modified WMA method, which is one of our additional
boarding methods. In this seating method, window seats are boarded first. However, if someone
with a window seat is also part of a group, that whole group will board. The same thing occurs for
middle seats and aisle seats. This avoids the problem of splitting groups while maintaining some of
the efficiency of the WMA method.

Figure 2.12: Monte Carlo simulation graph of the modified boarding by seats (WMA) method

The mean boarding time we obtained from this method was 650.84 seconds, with a 5th percentile
of 598s and a 95th percentile of 711s (spread of 113 seconds). This adjusted method is relatively
novel and hasn’t seen much discussion in literature. However, its unique combination of practical
and theoretical efficiency makes it an attractive proposition.

2.5 Optimal Boarding Method

After analysis of the previous five methods, we conclude that the modified WMA method is the
best. The mean time to board the narrow body plane after 1,000 trials is 650.84 seconds. It should
be noted that this isn’t the optimal time that was achieved; the modified Steffen took only 647.05
seconds, and WMA without groups took 519.13s. This data is summarised in Fig 2.13. However,
the modified WMA is significantly more practical to implement than both. The modified Steffen
requires an unrealistic degree of coordination from random passengers and WMA without groups has
the unrealistic assumption of splitting families and other groups apart. The modified WMA method
allows for groups and can be easily implemented by airlines (by just calling seat letters to board,
including family groups). It is also less sensitive to changes in the disobedience coefficient than
alternative methods, such the Steffen modified. Although the time to board is initially slightly faster
in the Steffen modified, as the disobedience coefficient increases, the time to board from the Steffen
method increases faster than the time to board from the modified WMA. This is advantageous, as
it means there is likely less variation in this modified WMA model in comparison to similarly fast
boarding methods, allowing airline companies to better predict the boarding times.

Page 14 of 77 2022019

Figure 2.13: Comparison of Monte Carlo simulation graphs of different boarding models featured in
previous sections

Figure 2.14: Sensitivity analysis of chosen methods for disobedience coefficient

3 Narrow-Body Disembarking

Having run simulations on our model under different boarding methods, we now turn our attention
to the problem of disembarking. When exiting a plane, people typically move towards the nearest
exit whenever space becomes available. A simulation of this is the basis of our disembarking model.
By modelling individual interactions, such as what happens when two people come into the same
space, we were able to ensure that our model was true as possible to a real disembarking.

3.1 Generation of Priority Map

The disembarking model runs through the generation of a priority map. Each person/group is
assigned a priority value, representing how much they want to leave the plane. This is realistic since
some people are desperate to leave and others being happy to sit on the plane until the rush dies
down. This value is used when there is a passenger interaction. The priority values of each passenger
that can move into the square are compared, and the passenger with highest priority is given the
right of way. This map can also be manipulated to get different disembarking methods. By giving
the highest priority to passengers we want to leave first, we can manipulate the order of who leaves
first to find an optimal disembarking method. As such, different methods call for different priority

Page 15 of 77 2022019

maps. The creation of the priority maps begins with the creation of an ideal priority map. In this
map everyone would be assigned values such that they’d disembark in the desired fashion. Fig 3.1
shows an ideal priority map for disembarking by row, back to front, in the narrow body aircraft.

Figure 3.1: Ideal priority heatmap of back to front disembarking

In practice it is highly unlikely that everyone would follow a perfect disembarking model and
therefore a disobedience coefficient was implemented, similar to the boarding model. The value of
the disobedience coefficient was increased from 0.3 (in the boarding model) to 0.4 in this disembarking
model. This choice was based on the fact that people are more likely to be tired, and may just want
to leave the plane as soon as possible following a long flight. There is no feasible way to obtain data
for this particular coefficient, and to investigate the effect this coefficient has on boarding times we
performed a sensitivity analysis, varying the disobedience coefficient. Like in the boarding model, the
disobedience coefficient describes the chance that a particular person won’t follow their prescribed
disembarking method. These disobedient people are then randomly assigned a new priority value
ranging from 1 to the maximum possible priority value which varies depending on method. An
implementation of this on the previously given priority map can be seen in Fig 3.2.

Figure 3.2: Introduction of disobedience coefficient to the ideal heatmap in Fig 3.1

As in the boarding method, we accounted for the fact that many people travel in groups that
cannot be split. To implement this in the model, the priority of a group of size n is set to the mean

of each member’s priority in that group like so: Pgroup = 1
n

n∑
i=1

Pi. The effect of this can be seen in

Fig 3.3. Note the group in row 32 (seats ABC).

Figure 3.3: Introduction of groups to the heatmap in Fig 3.3

Page 16 of 77 2022019

3.2 Logic of Disembarking

The diagram to the right shows the logic of the disembarking. By looping through the unoccupied
aisle spots, and moving individuals into them, we can simulate the whole moving out. We considered
the movement in and out of aisles as well.

Figure 3.4: A flow diagram of the disembarking algorithm from a passenger’s perspective

3.3 Time to Unstow Bags

Just as stowing bags during boarding blocks the aisle, the act of unstowing bags during disembarking
blocks the aisle too. The following formula is a variant of Eq 1 that simply changes n′

bins = nbins− 2.
This is done to avoid division by zero, since many overhead bins will have nbags = 6 as they are full.
Eq 1 accounts for the number of bags already in bins – it takes longer difficult to remove a bag out
of a packed luggage bin than an empty one. Note this n′

bins is simply labelled nbins in Eq 1.

Tbags(nbags, nbins, 6) =



0 if nbags = 0

4

1− 0.8(nbins − 1)/6
if nbags = 1

4

1− 0.8(nbins − 2)/6
+

2.25

1− (nbins − 1)/6
if nbags = 2

(4)

3.4 Optimal Disembarking Method

The optimal disembarking method for the narrow body aircraft was found to be disembarking from
back to front by row. This was initially surprising. However further analysis suggested it to be
the quickest due to it having the greatest aisle flow out of all methods. The rate of free aisle flow
hindered by retrieving baggage determines the rate people can enter the aisles and hence leave the
plane. Back to front results in the greatest aisle flow due to people feeding into the aisles from the
back of the plane. Should they need to retrieve a bag, they a) hold very few people up as they are
at near the end of the queue, and therefore hold very few people up and b) by them stopping, they
allow people in front of them flow into the queue meaning no gaps are left open.

This is opposite to the ‘front to back’ boarding method which is employed by most airlines and
is the slowest disembarking method. This is because when someone enters the aisle from the front

Page 17 of 77 2022019

Figure 3.5: Monte Carlo simulation graphs of various disembarking methods (1k trials)

of the aircraft and retrieve their bag they hold the whole queue up whilst not allowing anyone in
front of them to enter the queue as there is no one else in front.This back to front system would rely
on a ‘right of way’ approach to disembarking the plane, where people at the back have the highest
priority. When there is a space that two people could move into, the passenger at the front would
have to give way to the passenger coming from behind them.

Other notable disembarking methods were the Reversed WMA which grants priority to aisle-seat
passengers followed by middle then window seat. The Reversed WMA produces slower time than
Back to Front as more people enter the queue near the front of the aircraft and thus block the queue
as they retrieve bags. Reversed WMA is also impractical to implement as it requires a large degree
of coordination in comparison to the relatively simple Back to Front method which is a reverse of
the commonly used Front to Back Disembarking.

Disobedience Coefficient Reverse WMA Back to Front Random
0 393 231 474.3
0.2 421.7 355 474.3
0.4 438.2 404.2 476.1
0.6 459.4 435.7 474.9
0.8 470.2 451 474.2
1.0 474.9 474.1 474.7

Table 1: Sensitivity analysis of disembarking methods by scaling the disobedience coefficient

This table shows that as disobedience increases, the time taken to disembark decreases. At no
disobedience, we get fast disembarking times for reverse Wilma and back to front and at the maximum
disobedience we see the times being similar to a random boarding time. Importantly this table also
reveals that these models are very sensitive to disobedience especially back to front between 0 – 0.4.
It is important to note that despite back to front disobedience sensitive nature it still remains the
quickest at the assumed disobedience coefficent of 0.4. This also suggests the importance of airlines
employing methods to increase obedience when disembarking as a 20% reduction in disobedience
could cause up two minutes in extreme cases.

Page 18 of 77 2022019

People Not Retrieving Bags Reverse WMA Back to Front Random
0.2 411.9 374.7 468.2
0.4 352.7 325.3 352.7
0.6 289.9 261.0 309.8
0.8 234.1 215.7 235.6
1.0 200.1 200.9 200.0

Table 2: Sensitivity analysis of disembarking methods by changing people not retrieving bags

Table 2 shows a steady trend where the boarding time decreases and tends towards a constant
time of 200s as the people not retrieving bags increases. This trend is important for two reasons.
Firstly, it shows that if airlines could reduce the amount of bags carried it would result in much
faster disembarking times, to the point it would no longer matter which disembarking method was
employed. This is because less bags mean the aisle is blocked for a reduced amount of time. Even
a minor increase in people not taking bags, for example from 40% to 60%, would result in a drastic
reduction in disembarking time of 30s. This could be achieved by encouraging passengers to retrieve
their bag in the period between when the plane lands and the disembarking process begins thus
increasing the amount of people not retrieving during the disembarking.

4 Extension of Model to Other Aircraft

4.1 Flying Wing Aircraft

4.1.1 Flying Wing Boarding

Figure 4.1: Flying Wing
model

The Flying Wing Aircraft has a revolutionary seating plan with an additional
3 aisles and 18 seats across, but only 14 rows. To account for this, we built
upon the core algorithm of the narrow body in which passengers walk down
the aisle, by simulating all 4 aisles at once, with an additional aisle connecting
all of these at the top from the entrance. We initially considered simulating
only one aisle and simply quartering the flow rate into the aisle. However,
this is not realistic as the top aisle can still be blocked – for example, consider
the case where a passenger is stowing their luggage in row 1 of the first aisle,
whilst a passenger behind them waits to get into this aisle. Keeping with the
assumption that only one passenger can fit into an aisle, such a scenario would
block passengers from accessing all other aisles, increasing total boarding time.
Thus, we must simulate all aisles boarding at once. Furthermore, although the
number of aisles in this plane may cause confusion about where to go, we
assumed that this would already be accounted for by the presence of flight
attendants, causing no passengers to walk down the wrong aisle.The extended
algorithm as experienced by a passenger is represented in the flow chart. A
visualization of this model nearing completion is also displayed. Note: the top
aisle is not included in this visualisation.

Different boarding models can be applied to the flying wing aircraft to dif-
ferent effect. Random and sectional boarding are relatively easily implemented,
and both would be theoretically and practically effective. However, our optimal boarding method for
the narrow body aircraft, the WMA method, is now rendered impractical to implement. When con-
sidering a seat block between two aisles, where ‘A’, ‘M’, and ‘W’ represent aisle, middle, and window
seats respectively. Translating into rows six seats wide, you get the pattern A—M—W—W—M—A.
It would be impractical for passengers to judge whether their seat is designated as A, M or W, even
without incorporating groups.

Page 19 of 77 2022019

Figure 4.2: Flow diagram of passenger movement logic for the flying wing aircraft

Another potential boarding method we could adapt to a wide wing aircraft would be the modified
Steffen method. However, given the established impracticality of the modified Steffen method on
the narrow body, this would be even less realistic to expect passengers to follow it when the aircraft
is boasting multiple aisles. Thus, we disregarded this method for this plane type. This left us with
two viable boarding methods for the wing plane. These are shown in Fig 4.3, along with adjusted
WMA times. The mean result times from these boarding methods were 593.2 seconds for the back
to front time, 558.9 seconds for the random boarding, and 546.1 seconds for the adjusted WMA
boarding time.Despite this, the optimal boarding method is the section boarding, from back to front.
Despite having the lowest times, the impracticality of other solutions makes it the most attractive.
The closest in terms of overall effectiveness would be random boarding. However, the organisational
issues of trying to queue all the passengers in a random order with resulting in excessively large
queues would more than out weigh the megre 34.3 second boarding time advantage.

Figure 4.3: Comparison of distribution of times for different methods on the Flying Wing aircraft.
Note that the mean lines for AFM, random and WMA are located at 546.1, 558.9 and 593.2

respectively.

4.1.2 Flying Wing Disembarking

Figure 4.4: Flying Wing
model with across priorities

The core logic of the priority disembarking model remains the same when
adapted to the Flying Wing Aircraft. The plane is broken into four sub-
aisles that passengers are able to move into, dependent on the priority logic.
Additionally a leaving aisle has been added that runs by all of the sub aisles.
Passengers are moved into and along this leaving aisle to the exit through the
use of the priority logic.

Page 20 of 77 2022019

Figure 4.5: Comparison of disembarking methods on the flying wing aircraft

Similarly to the narrow body disembarking, models that prioritise aisle flow
will be the fastest in the flying wing aircraft. The most successful model was
the across method in Fig 4.4. The across method increased the priority assigned
to passengers the further they are from the door, with respect to row and seat.
This is in comparison to the ‘front to back’ disembarking method that only
increases priority across the row. The across method of distributing priority
resulted in the quickest disembarking times as it systematically emptied the
aircraft from the bottom right to top left of the diagram (with the exit in the
top left). This allowed most people to enter the aisle when they are few people
behind them (as the people behind have already left). This means there are
minimal aisle blockages when passengers retrieve bags, and passengers in front
of the blockage will be able to move into the aisle. The across method is quite
practical as it just requires for people to wait for the person behind to leave, or the person behind to
retrieve a bag hence allowing them to leave. Similarly to other disembarking models, this is a form
of ‘right of way system’, where people furthest from the door have right of way.

4.2 Two-Entrance Two-Aisle Aircraft

4.2.1 Two-Entrance Two-Aisle Boarding

The two-entrance two-aisle aircraft adds the complexity of multiple entrances, as well as a first-class
section. However, we made the following assumptions:

• The first-class section would board first, as is standard across airlines. Any late passengers
would interfere negligibly with the rest of the boarding process, as they do not walk down the
same aisles as the rest of the passengers

• Rows 12 to 26 (and first-class) would board from the front entrance, whereas rows 27 to 47
would board from the back

• All passengers would board from the correct entrance. In a similar reasoning to everybody
walking down the right aisle, we assumed that a plane of this size – and especially one with
first class – would have sufficient flight attendants to ensure that this did not happen.

Given these assumptions, a valid simplification can be made to the model: the total boarding time
would simply be the time taken to board first class, added to the greatest boarding time of the two
sections (seats accessed from entrance 1 and seats accessed from entrance 2) of the plane. Boarding

Page 21 of 77 2022019

methods in first class are unreasonable to implement in real life given the smaller number of seats,
but also the easier access to seats due to greater space. Thus, this time was calculated using the
random boarding method with increased speeds for walking and stowing luggage. The average was
found to beWe again tested this plane with unstructured (random) and sectional methods and our
proposed method of Wilma with groups (in this case, the middle seat does not exist). Once again,
Wilma with groups was found to be the most effective method.

Figure 4.6: Comparison of boarding methods on the two-entrance two-aisle aircraft

4.2.2 Two-Entrance Two-Aisle Disembarking

The assumptions made in the boarding model of Two Entrance Two Aisle can be carried across to the
disembarking model. Consequently, simulation were run on both halves of the plane for disembarking
and the times were added to the time taken to board first class. Although disembarking occurs on
two aisles in this model, aisle flow is still valued and therefore models that increase aisle flow such
as back to front is still fastest with a mean time of 180s.

5 Pandemic Capacity Decrease

The COVID-19 pandemic has introduced many additional barriers to air travel. Notably, the passen-
ger capacity of aircrafts is forced to decrease to help combat the spread of the disease. We test and
present the effect on embarking and disembarking the three aircraft types when passenger capacity
is limited to 70%, 50% and 30%. We ran 1000 test cases for all aircraft at all capacity levels with
the three most optimal methods, the averages for which can be found in the appendix.

5.1 Boarding

An important consideration is that it is not simply random what tickets are not for sale on an aircraft
with reduced capacity. Instead, they are chosen to maximise social distancing. For capacity c each
row with numbers of seats s, we allowed a maximum of ⌈c× s⌉ seats to be filled in that row (where
⌈x⌉ is the ceiling function), and reduced passengers randomly from there on until the number of
passengers reached c. However, groups are still allowed to sit with each other. An analysis of the
data would suggest that for both the Narrow Body and Flying Wing aircraft, the Wilma with groups
method remains preferable up until a capacity of 50%. At this value its efficiency is only marginal.
However, beyond this it becomes optimal to board by section (aft then middle then front). This

Page 22 of 77 2022019

can be explained in practice, as at lower numbers of passengers, there is lesser chance of someone
blocking the way to a seat – the main problem with sectional boarding. Therefore, without this
problem, filling up from the back allows the most passengers to enter the queue at once, resulting
in being more optimal. For the Two Entrance Two Aisle aircraft, sectional boarding also quickly
becomes the most This method has the added benefit of splitting passengers into boarding groups
that also sit together, meaning that although contact cannot be completely avoided, it is minimized
to be with the same people. If the pandemic is at the point that capacities of 50% or below need to be
enforced, then this is a valuable aspect. Therefore, we would recommend this method for capacities
of 50% and below on all aircraft. For capacities of 70% and 100%, the original recommended method
remains the most optimal (this is still sectional for the Two Entrance Two Aisle aircraft).

5.2 Disembarking

To model reduced capacity of disembarking, we assumed a similar dispersal of passengers as in
boarding. For all three aircraft, back to front remained the quickest method of disembarking no
matter the capacity. Unfortunately, this does not preserve the social distancing between differing
sections of the plane as achieved by boarding. However, at low capacities, disembarking times between
different methods became exceedingly quick (under 2 minutes) and closer together. It would be no
huge cost to the aircraft to favour a slower method at these capacities. Thus, at low capacities which
aim to contain Covid, we would recommend a front to back method. Although this has not been
modelled, by extrapolating data for modelled methods, it is clear that this would still be done in a
tight timeframe.

6 Evaluation of Models

6.1 Strengths

• Adaptable. Not only can our models be used for many different boarding and disembarking
methods, but our models can be adapted to wide range of plane shapes and sizes, that could
consist of multiple aisles or entrances, with relative ease.

• Comprehensive. Our models take into account a wide range of factors affecting boarding and
disembarking times, such as people moving past each other within rows, or time taken to stow
and retrieve luggage. These times are calculated using real life data, ensuring the highest
accuracy.

• Realistic. Many online models may have the strengths above, but fail to account for many
common behaviours, such as people disobeying boarding instructions and passengers travelling
together in groups.

6.2 Limitations

• Memory intensive. Due to boarding/disembarking being a stochastic process, a large number
of test cases are needed to obtain an accurate average for any given scenario. Our model is
bulky.

• Large number of assumptions made. For ease of simulation, we assumed many things, ranging
from a constant walking speed down the aisle, or that passengers would always sit in the correct
seat or walk down the correct aisle to their seat. In reality, this will not always be the case.
To improve our model, we could include these factors in our simulation.

Page 23 of 77 2022019

Letter to Executive

Dear Airline Executive,

Through analysis of boarding and disembarking methods, our team has developed a model that
has allowed us to determine the optimal boarding and disembarking methods for a variety of differ-
ent aircraft, with a number of different restrictions.

One consideration when deciding boarding methods is the impact that it will have on family groups.
It is vital that we avoid splitting these groups when boarding to ensure all passengers have a positive
travelling experience with you. Another factor that affects loading times is the number of passengers
that don’t follow boarding methods.

We found that three main factors that contribute to the time take to board an aircraft. The first of
these is the walking speed of the passengers. However, there is not much that can realistically be
done about this. Secondly, there is the time taken to stow overhead luggage. While passengers are
doing this, they are blocking the aisle. Another aisle blockage comes passengers try to get to seats
that are blocked by other passengers in same row.

These impact of these aisle blockages can be minimised by the chosen boarding method, and also
by several different techniques. These include ensuring that people follow the boarding method (po-
tentially through regulation from air stewards), and also by making more easily accessible overhead
storage, to minimise time spent retrieving stowed luggage.

That being said, method choice is an easy was to immediately speed up passenger boarding/dis-
embarking. In a standard narrow body aircraft, passengers should be boarded with the adjusted
WMA method (window seats board first, followed by middle seats and then aisle seats, but groups
board together), and should disembark giving the right of way to passengers coming from the back.
Both methods minimise aisle blockages, and allow optimal aisle flow.

In a wide wing aircraft, the optimal boarding method is by section (back to front). This fastest
method that can be practically implemented. To disembark, we recommend the ‘across’ method,
similar the method for a narrow aircraft, where passengers furthest from the door get right of way.
For the 2 aisle, 2 entrance aircraft, the recommended methods are the same as the narrow body:
adjust WMA for boarding and back to front for disembarking. We hope these recommendations and
explanations will aid you in running your airline, and look forward to your feedback.

Page 24 of 77 2022019

7 Appendices

References

[1] E. Mazareanu. Number of flights performed by the global airline industry from 2004 to 2022.
2022. url: https://www.statista.com/statistics/564769/airline-industry-number-
of-flights/ (visited on 03/28/2022).

[2] Suzanne Hiemstra-Van Mastrigt, Richard Ottens, and Peter Vink. “Identifying bottlenecks and
designing ideas and solutions for improving aircraft passengers’ experience during boarding and
disembarking”. In: Applied Ergonomics 77 (2019), pp. 16–21.

[3] Highskyflying. How Wide Are Airplane Aisles? 2022. url: https://www.highskyflying.com/
how-wide-are-airplane-aisles/ (visited on 03/29/2022).

[4] Kathryn Watson. What’s an Average Shoulder Width? 2018. url: https://www.healthline.
com/health/average-shoulder-width (visited on 03/30/2022).

[5] Air New Zealand. Carry-on Bags. url: https://www.airnewzealand.co.nz/carry- on-
baggage (visited on 03/29/2022).

[6] Jason H. Steffen. “Optimal boarding method for airline passengers”. In: Journal of Air Transport
Management 14.3 (May 2008), pp. 146–150. doi: 10.1016/j.jairtraman.2008.03.003. url:
https://doi.org/10.1016%2Fj.jairtraman.2008.03.003.

YouTube videos used for analysis throughout the report
https://www.youtube.com/watch?v=SnAYtU3nc0g
https://www.youtube.com/watch?v=F4Dt2-kc5Mw
https://www.youtube.com/watch?v=OCCUgcb4LvE
https://www.youtube.com/watch?v=V3RXT0D0CnM
https://www.youtube.com/watch?v=jv4y4ir07Nc
https://www.youtube.com/watch?v=AjSFc3yLA9s
https://www.youtube.com/watch?v=a6oBGKEdYxc
https://www.youtube.com/watch?v=perToEokKR0
https://www.youtube.com/watch?v=godZCdvG8CI
https://www.youtube.com/watch?v=mrcQL5Od-Fg

Page 25 of 77 2022019

Appendix A

Figure 7.1: Bar chart of mean boarding times for different boarding by section combinations. The
labels are in order of section boarding (e.g. AFM means aft first, front second, middle last. Note

too that the chart on the left is an enlarged section of the chart on the right.

Figure 7.2: Comparison of disembarking methods for narrow body aircraft

Page 26 of 77 2022019

Appendix B

Figure 7.3: Monte Carlo simulation graphs of boarding by sections method in different orders. For
instance, Aft Front Middle means first the aft is boarded, then front, and finally the middle.

Page 27 of 77 2022019

Appendix C

Page 28 of 77 2022019

Appendix D

Code used in R for statistical analysis

1 # INSTALL AND LOAD PACKAGES ################################

2

3 library(datasets) # Load/unload base packages manually

4

5 ################# Graph Function ###################

6 make_histogram <- function(x,colour , title ,labelpos ,meanpos ,breaks1) {

7 quantile5 <- c(quantile(x, probs = 0.05))

8 quantile95 <- c(quantile(x, probs = 0.95))

9 mean <- mean(x)

10 hist(x,

Page 29 of 77 2022019

11 xlim=c(400 ,1100),

12 ylim=c(0 ,350),

13 col=colour ,

14 breaks = breaks1 ,

15 xlab="Time Taken (s)",

16 ylab="Occurence",

17 main=title)

18 # Add lines for mean , 5%, and 95%

19 abline(v = mean ,

20 col = "red",

21 lwd = 3)

22 abline(v = c(quantile5 , quantile95),

23 col = "grey",

24 lwd = 2)

25 # Add labels

26 text(x = mean*meanpos ,

27 y = 125,

28 paste("Mean =", round(mean ,2)),

29 col = "black",

30 cex = 1)

31 text(x = mean*labelpos ,

32 y = 87.5,

33 paste("5th Percentile =", round(quantile5 ,1)),

34 col = "black",

35 cex = 0.7)

36 text(x = mean*labelpos ,

37 y = 50,

38 paste("95th Percentile =", round(quantile95 , 1)),

39 col = "black",

40 cex = 0.7)

41 }

42 dev.off()

43 #function(x,colour , title ,labelpos ,meanpos)

44 ########### Finding best and worst boarding by sections #############

45 par(mfrow = c(3,2))

46 make_histogram(sectionsdata$afm , "#ffb3ba",

47 "Aft Front Middle",

48 0.65, 1.18)

49 make_histogram(sectionsdata$amf , "#ffb3ba",

50 "Aft Middle Front",

51 0.65, 1.18)

52 make_histogram(sectionsdata$maf , "#ffb3ba",

53 "Middle Aft Front",

54 0.65, 1.18)

55 make_histogram(sectionsdata$mfa , "#ffb3ba",

56 "Middle Front Aft",

57 0.65, 1.18)

58 make_histogram(sectionsdata$fma , "#ffb3ba",

59 "Front Middle Aft",

60 0.65, 1.18)

61 make_histogram(sectionsdata$fam , "#ffb3ba",

62 "Front Aft Middle",

63 0.65, 1.18)

64 fma <-mean(sectionsdata$fma)
65 #Compare with groups to without gorups

66 dev.off()

67 #function(x,colour , title ,labelpos ,meanpos)

68 #Compare four boarding methods: Random , Seats , Best Section , Worst Section

69 par(mfrow = c(1,2))

70 breaks2 <-rep (10 ,1)

Page 30 of 77 2022019

71 make_histogram(dataogmethod$Random , "#baffc9",

72 "Random Boarding",

73 1.33, 1.33)

74 make_histogram(dataogmethod$Seat , "#bae1ff",

75 "Boarding by Seat: Groups",

76 1.45, 1.45, c

(460 ,485 ,510 ,535 ,560 ,585 ,610 ,635 ,660 ,685 ,710 ,735 ,760 ,785 ,810))

77 make_histogram(dataogmethod$fma , "#ffb3ba",

78 "Front to Back",

79 0.65, 0.65)

80 make_histogram(dataogmethod$amf , "#ffb3ba",

81 "Back to Front",

82 0.7, 0.7)

83 make_histogram(dataogmethod$Seats.No.Groups , "#bae1ff",

84 "Boarding by Seat: No Groups",

85 1.6, 1.6, c(420 ,440 ,460 ,480 ,500 ,520 ,540 ,560 ,580 ,600))

86 dev.off()

87 make_histogram(groupsfirst$prioritize_groups_boarding , "#ffffba",

88 "Groups First Boarding",

89 1.28, 1.28)

90 make_histogram(modifiedsteffen$modsteffen , "#ffdfba",

91 "Steffen Modified Boarding",

92 1.3, 1.3)

93 ######################## Overlay histograms ###########################

94 library(ggplot2)

95 library(plyr)

96 #mean

97 mu <- ddply(dataogmethod.transp , "Type", summarise , grp.mean=mean(Time))

98 # Basic density

99 #ggplot(dataogmethod.transp , aes(x=Time , fill=Type)) +

100 #geom_density(color =" darkblue", fill=" lightblue ")

101 # Use semi -transparent fill

102 p <- ggplot(dataogmethod.transp , aes(x = Time , fill = Type)) +

103 geom_density(alpha =0.6) +

104 #theme_bw() +

105 #geom_vline(data=mu, aes(xintercept=grp.mean , color ="black "),

106 #linetype =" dashed ") +

107 labs(title=" Comparison of Methods",

108 x="Time (S)", y = "Relative Frequency")

109

110 # Add mean lines

111 p+scale_fill_manual(values=c("#ffb3ba", "#ffffba","#ffdfba","#bae1ff","#baffc9"))

112 p

113 ############ Provided Methods Sensitivity Analysis ##############################

114 dev.off()

115 attach(bagsensitivity)

116 linearModel <- lm(SectionBTF ~ NBC , data=sensitivityanalysis)

117 summary(linearModel)

118 lm(formula = Seats.No.Group ~ NBC)

119 sensitivityanalysis$NBC2 <- sensitivityanalysis$NBC^2
120 quadraticModel <- lm(SectionBTF ~ NBC + NBC2 , data=sensitivityanalysis)

121 summary(quadraticModel)

122 #create sequence of hour values

123 NBCValues <- seq(0, 1, 0.01)

124 #create list of predicted time values using quadratic model

125 timePredict <- predict(quadraticModel ,list(NBC=NBCValues , NBC2=NBCValues ^2))

126 plot(bagsensitivity$bagcoef , bagsensitivity$section , pch = 19, cex = 0.75,

127 col = "#ffb3ba", xlab = "Bag Coefficient",

128 ylab = "Time (s)",

129 ylim=c(450 ,900),

Page 31 of 77 2022019

130 main = "Sensitivity Analysis of 3 Given Models")

131 #lines(NBCValues , timePredict , col=’#ffb3ba ’)

132 abline(lm(bagsensitivity$section ~ bagsensitivity$bagcoef), col = "#ffb3ba")

133 points(bagsensitivity$bagcoef , bagsensitivity$random , pch = 19, cex = 0.75, col =

"#95 cca1")

134 abline(lm(bagsensitivity$random ~ bagsensitivity$bagcoef), col = "#95 cca1")

135 #lines(bagsensitivity$bagcoef , bagsensitivity$wma , col ="# bae1ff ")

136 points(bagsensitivity$bagcoef , bagsensitivity$wma , pch = 19, cex = 0.75, col = "#

bae1ff")

137 abline(lm(bagsensitivity$wma ~ bagsensitivity$bagcoef), col = "#bae1ff")

138 legend (0.7, 550, legend=c("Back to Front", "Random", "Seat (No Groups)"), col=c("

#ffb3ba", "#95 cca1", "#bae1ff"), lty=1:2, cex =0.65)

139 ##################### Suggested Methods Sensitivity ############################

140 dev.off()

141 attach(seat_with_groups1)

142 plot(NBC , SeatwithGroups , pch = 19, cex = 0.75,

143 col = "#bae1ff", xlab = "Disobedience Coefficient",

144 ylab = "Time (s)",

145 ylim=c(550 ,750),

146 main = "Sensitivity Analysis of Chosen Method Against Random")

147 abline(lm(SeatwithGroups ~ NBC), col = "#bae1ff")

148 lines(NBC , Random , col="#95 cca1")

149 points(NBC , Random , pch = 19, cex = 0.75, col = "#95 cca1")

150

151 legend (0.75, 625, legend=c("Random", "Seat (Groups)"), col=c("#95 cca1", "#bae1ff"

), lty=1, cex =0.65)

152 ##

153 barplot ((Barplot_section_order$Mean),
154 main="Mean Time Taken to Board (10k Trials)",

155 names.arg=c("AFM", "AMF", "MAF","MFA","FMA","FAM"),

156 ylim=c(700 ,900),

157 xpd=FALSE ,

158 col="#ffb3ba",

159 ylab = "Time Taken to Board (s)",

160 xlab = "Boarding Method")

161 ##

162 install.packages("ggforce")

163 library("ggforce")

164 attach(Barplot_section_order)

165 ggplot(Barplot_section_order , aes(Order , Mean)) + # ggplot2 facet_

zoom plot

166 geom_bar(stat = "identity", fill = "#f2aab1") +

167 ggtitle(" Mean Time Taken to Board (10K Trials)")+

168 labs(y= "Time Taken (s)", x = "Boarding Order")+

169 theme(panel.background = element_rect("#f9f9f9"))+

170 facet_zoom(ylim = c(700, 900), show.area=TRUE)

171 ##

Appendix E

1

2 from audioop import reverse

3 import graphlib

4 from lib2to3.pgen2.token import NUMBER

5 import random

6 from string import ascii_letters

7 import math

8

Page 32 of 77 2022019

9 #Comment out if not using

10 import matplotlib.pyplot as plt

11 import numpy

12 import matplotlib.colors as colors

13 import matplotlib as mpl

14 from matplotlib.colors import Colormap , LinearSegmentedColormap , ListedColormap

15 #Constants for refrences

16 PRIORITY = 0

17 INTERNAL_COCK = 1

18 HAS_LUGGAGE = 2

19

20 # all measured in standard units (m,s,m/s etc)

21 AVERAGE_WALKING_SPEED = 0.8

22 AVERAGE_SEAT_PITCH = 0.78

23 TIME_TO_MOVE = AVERAGE_SEAT_PITCH / AVERAGE_WALKING_SPEED

24 TIME_TO_MOVE_PAST_SEAT = 2

25

26 #Priority system

27 priority_weightings = []

28 highest_priority_assigned = 0

29 #Things to change

30 BAG_COEFFICIENT = (20 ,80 ,10)

31 NAUGHTY_BOY_COEFFICIENT = 0.3

32 THANOS_SNAP_COEFFICENT = 0.5

33 # proportions of group sizes

34 SINGLE_PRINGLE_COEFFICIENT = 70

35 COUPLES_COEFFIENCT = 20

36 THREESOME_COEFFICIENT = 10

37

38

39

40 # General setup shotput all seats in

41 NUM_ROWS = 33

42 NUM_SEATS = 6

43 AISLE_INDEX = 3

44 #Wide body shot

45 WIDE_WING_SEATS = 28

46 WIDE_WING_ROWS = 15

47 TWO_SEATS = 9

48 TWO_ROWS = 42

49 TWO_A_ROWS= 18

50 TWO_B_ROWS = 21

51 GAP_SIZE = 3

52

53

54

55

56 #Normal render

57 def intalize_render ():

58

59 global highest_priority_assigned

60 #Absolute mess of code

61 image = []

62 for i in range(NUM_SEATS +1):

63 subimage = []

64 for k in range(NUM_ROWS):

65 if k % 2 == 0:

66 subimage.append (0.5)

67 else:

68 subimage.append (1.5)

Page 33 of 77 2022019

69

70 image.append(subimage)

71

72

73 fig ,ax = plt.subplots (1,1)

74

75 cmap = mpl.cm.OrRd

76 norm = mpl.colors.Normalize(vmin=-1, vmax=highest_priority_assigned)

77

78

79

80 image = numpy.array(image)

81 im = ax.imshow(image , cmap=cmap , norm = norm)

82

83 ax.set_yticks(numpy.arange (0.5, NUM_SEATS +1.5, 1).tolist (), minor=False)

84 ax.yaxis.grid(True , which=’major’)

85 ax.set_yticklabels ([’Row A’,’Row B’,’Row C’,’Aisle’,’Row D’,’Row E’,’Row F’])

86 ax.set_ylim(top =-0.5)

87

88 ax.set_xticks(numpy.arange (0.5, NUM_ROWS +.5, 1).tolist (), minor=False)

89 ax.xaxis.grid(True , which=’major’)

90 xticklist = []

91 #Create list of numbers between

92 for i in range(NUM_ROWS):

93 if ((i+1) % 5 == 0) and (i != 0):

94 xticklist.append(str(i+1))

95 else:

96 xticklist.append(’’)

97

98 ax.set_xticklabels(xticklist)

99 ax.set_xlim(left =-0.5)

100

101 return im ,fig

102 def update_render(seat_plan):

103

104 visualizer = []

105

106 for i,column in enumerate(seat_plan):

107 visualizer.append ([])

108 for seats in column:

109

110 visualizer[i]. append(seats[PRIORITY])

111

112

113

114

115

116 im.set_data(visualizer)

117 fig.canvas.draw_idle ()

118 plt.pause (1)

119 def intalize_render_two_thing ():

120

121 global highest_priority_assigned

122

123 #Absolute mess of code

124 image = []

125 for i in range(TWO_SEATS):

126 subimage = []

127 for k in range(TWO_ROWS):

128 if k % 2 == 0:

Page 34 of 77 2022019

129 subimage.append (0.5)

130 else:

131 subimage.append (1.5)

132

133 image.append(subimage)

134

135

136 fig ,ax = plt.subplots (1,1)

137

138 cmap = mpl.cm.OrRd

139 norm = mpl.colors.Normalize(vmin=-1, vmax=highest_priority_assigned)

140

141

142

143 image = numpy.array(image)

144 im = ax.imshow(image , cmap=cmap , norm = norm)

145

146 ax.set_yticks(numpy.arange (0.5, TWO_SEATS +0.5, 1).tolist (), minor=False)

147 ax.yaxis.grid(True , which=’major’)

148 ax.set_yticklabels ([’Row A’,’Row B’,’Aisle’,’Row C’,’Row D’,’Row E’,’Aisle’,’

Row F’,’Row G’])

149 ax.set_ylim(top =-0.5)

150 ax.set_title(’Two Doors Two Aisles Disembarking Model’)

151 ax.set_xticks(numpy.arange (0.5, TWO_ROWS +.5, 1).tolist (), minor=False)

152 ax.xaxis.grid(True , which=’major’)

153 xticklist = []

154 #Create list of numbers between

155 for i in range(TWO_ROWS):

156 if ((i+1) % 5 == 0) and (i != 0):

157 xticklist.append(str(i+1))

158 else:

159 xticklist.append(’’)

160

161 ax.set_xticklabels(xticklist)

162 ax.set_xlim(left =-0.5)

163

164 return im ,fig

165 def intalize_render_widebody ():

166

167 global highest_priority_assigned

168

169 #Absolute mess of code

170 image = []

171 for i in range(WIDE_WING_SEATS):

172 subimage = []

173 for k in range(WIDE_WING_ROWS):

174 if k % 2 == 0:

175 subimage.append (0.5)

176 else:

177 subimage.append (1.5)

178

179 image.append(subimage)

180

181

182 fig ,ax = plt.subplots (1,1)

183

184 cmap = mpl.cm.OrRd

185 norm = mpl.colors.Normalize(vmin=-1, vmax=highest_priority_assigned)

186

187

Page 35 of 77 2022019

188

189 image = numpy.array(image)

190 im = ax.imshow(image , cmap=cmap , norm = norm)

191

192 ax.set_yticks(numpy.arange (0.5, WIDE_WING_SEATS +0.5, 1).tolist (), minor=False

)

193 ax.yaxis.grid(True , which=’major’)

194 ax.set_yticklabels ([’Row A’,’Row B’,’Row C’,’Aisle’,’Row D’,’Row E’,’Row F’,’

Row G’,’Row H’,’Row I’,’Aisle’,’Row J’,’Row K’,’Row L’,’Row M’,’Row N’,’Row O’

,’Aisle’,’Row P’,’Row Q’,’Row R’,’Row S’,’Row T’,’Row U’,’Aisle’,’Row V’,’Row

W’,’Row X’])

195 ax.set_ylim(top =-0.5)

196 ax.set_title(’Widebody Disembarking Model’)

197 ax.set_xticks(numpy.arange (0.5, WIDE_WING_ROWS +.5, 1).tolist (), minor=False)

198 ax.xaxis.grid(True , which=’major’)

199 xticklist = []

200 #Create list of numbers between

201 for i in range(WIDE_WING_ROWS):

202 if ((i+1) % 5 == 0) and (i != 0):

203 xticklist.append(str(i+1))

204 else:

205 xticklist.append(’’)

206

207 ax.set_xticklabels(xticklist)

208 ax.set_xlim(left =-0.5)

209

210 return im ,fig

211

212 #General shot to setup

213 def generate_priorties(highest_priority_assigned):

214

215

216 weights = list(range(1, highest_priority_assigned +1))

217

218 return(weights)

219 def group_size ():

220 return random.choices ([1,2,3], weights =(SINGLE_PRINGLE_COEFFICIENT ,

COUPLES_COEFFIENCT ,THREESOME_COEFFICIENT), k=1)[0]

221 def assign_luggage ():

222 return random.choices ([0,1,2], weights=BAG_COEFFICIENT , k=1) [0]

223 def bag_shit ():

224 global seating_plan

225 #Intalize bag amounts

226 lockers = [[0 ,0] for i in range(NUM_ROWS)]

227 for row in range(NUM_ROWS):

228 for seat in range(NUM_SEATS +1):

229

230 if seat < 3:

231 lockers[row][0] += seating_plan[seat][row][HAS_LUGGAGE]

232

233 elif seat > 3:

234 lockers[row][1] += seating_plan[seat][row][HAS_LUGGAGE]

235 return lockers

236 #Widebody

237 def bag_shit_wide ():

238 global seating_plan

239 #Intalize bag amounts

240

241 lockers = [[[0,0] for _ in range(WIDE_WING_ROWS -1)] for _ in range (4)]

242

Page 36 of 77 2022019

243

244 for row in range(1, WIDE_WING_ROWS):

245

246 for seat in range(1, WIDE_WING_SEATS):

247 sublocker = math.floor((seat)/7)

248 if seating_plan[seat][row][PRIORITY] != -1:

249 if seat % 7 < 3:

250 lockers[sublocker][row -1][0] += seating_plan[seat][row][

HAS_LUGGAGE]

251

252 elif seat % 7 > 3:

253 lockers[sublocker][row -1][1] += seating_plan[seat][row][

HAS_LUGGAGE]

254

255

256

257

258

259

260 return lockers

261 #Modifitying shot

262 def group_shit ():

263 for row in range(NUM_ROWS):

264 #Resets var

265 current_group_size = 0

266 current_group_priorty = []

267 current_group_people_added = 0

268 for seat in range(NUM_SEATS +1):

269 #make sure we not in aisles

270 if seat != AISLE_INDEX:

271 #If not currently generating create a new group

272 if current_group_people_added == 0:

273 current_group_size = current_group_people_added =

group_size ()

274 if current_group_people_added == 1:

275 current_group_people_added = 0

276 else:

277 current_group_priorty.append(seating_plan[seat][row][

PRIORITY])

278 current_group_people_added -=1

279

280

281 else: # Currently generating a group

282 current_group_priorty.append(seating_plan[seat][row][

PRIORITY])

283 current_group_people_added -=1

284

285 #If all people added to group

286 if current_group_people_added == 0:

287 #Loop back through people and send priority to

average

288

289

290 gone_through_aisles = 0

291 for i in range(current_group_size):

292 #Go back through and adjust priority

293

294 #If gone through aisles add another

295 if (seat - i) == AISLE_INDEX:

296 gone_through_aisles = 1

Page 37 of 77 2022019

297

298 seating_plan[seat -(i+gone_through_aisles)][row][

PRIORITY] = round(sum(current_group_priorty) / len(current_group_priorty))

299 def naughty_people ():

300

301 #Generate total amount of naughty boys

302 naughty_bois = math.ceil(NUM_ROWS*NUM_SEATS*NAUGHTY_BOY_COEFFICIENT)

303

304 for i in range(naughty_bois):

305 numbers = list(range(0, NUM_SEATS +1))

306

307 numbers.remove (3)

308

309 seat = random.choice(numbers)

310 row = random.randrange(NUM_ROWS)

311

312 seating_plan[seat][row][PRIORITY] = random.randrange(1,

highest_priority_assigned +1)

313 def thanos_snap ():

314 for seat in range(NUM_SEATS +1):

315 for row in range(NUM_ROWS):

316 if THANOS_SNAP_COEFFICENT > random.random ():

317 seating_plan[seat][row] = [-1,0]

318 #Narrow body boarding

319 def reverse_wilma ():

320 global seating_plan

321 global highest_priority_assigned

322

323 highest_priority_assigned = 3

324

325 seating_plan = [[[3,0, assign_luggage ()] for _ in range(NUM_ROWS)] for _ in

range(NUM_SEATS + 1)]

326 seating_plan [0]= [[1,0, assign_luggage ()] for _ in range(NUM_ROWS)]

327 seating_plan [6]= [[1,0, assign_luggage ()] for _ in range(NUM_ROWS)]

328 seating_plan [1]= [[2,0, assign_luggage ()] for _ in range(NUM_ROWS)]

329 seating_plan [5]= [[2,0, assign_luggage ()] for _ in range(NUM_ROWS)]

330 seating_plan[AISLE_INDEX]= [[-1,0] for _ in range(NUM_ROWS)]

331

332 naughty_people ()

333 group_shit ()

334 def random_deboard ():

335 global seating_plan

336 global highest_priority_assigned

337

338 highest_priority_assigned = 10

339

340 seating_plan = [[[random.randrange (1,10) ,0,assign_luggage ()] for _ in range(

NUM_ROWS)] for _ in range(NUM_SEATS + 1)]

341 seating_plan[AISLE_INDEX]= [[-1,0] for _ in range(NUM_ROWS)]

342

343 group_shit ()

344 def sections ():

345

346 global seating_plan

347

348 global highest_priority_assigned

349

350 highest_priority_assigned = 3

351 fjuk = []

352 for i in range(NUM_SEATS +1):

Page 38 of 77 2022019

353 aisles = []

354 for k in range (0,11):

355 aisles.append ([3,0, assign_luggage ()])

356 for k in range (11 ,22):

357 aisles.append ([2,0, assign_luggage ()])

358 for k in range(22, NUM_ROWS):

359 aisles.append ([1,0, assign_luggage ()])

360 fjuk.append(aisles)

361 seating_plan = fjuk

362 seating_plan[AISLE_INDEX]= [[-1,0] for _ in range(NUM_ROWS)]

363 naughty_people ()

364 group_shit ()

365 def back_to_front ():

366 global seating_plan

367 global highest_priority_assigned

368

369

370 #Create empty seating plan

371 seating_plan = [[[-1,0, assign_luggage ()] for _ in range(NUM_ROWS)] for _ in

range(NUM_SEATS + 1)]

372

373 highest_priority_assigned = 0

374

375 for row in range(NUM_ROWS):

376 for seat in range(NUM_SEATS +1):

377 #Increment priority

378

379

380 if seat == 0 or seat == 3:

381 highest_priority_assigned += 1

382 seating_plan[seat][row] = ([highest_priority_assigned ,0,

assign_luggage ()])

383

384 seating_plan[AISLE_INDEX]= [[-1,0] for _ in range(NUM_ROWS)]

385 #naughty_people ()

386 #group_shit ()

387 def generate_front_to_back ():

388 global seating_plan

389 global highest_priority_assigned

390

391

392 #Create empty seating plan

393 seating_plan = [[[-1,0, assign_luggage ()] for _ in range(NUM_ROWS)] for _ in

range(NUM_SEATS + 1)]

394

395 highest_priority_assigned = 0

396

397 for row in reversed(range(NUM_ROWS)):

398 for seat in range(NUM_SEATS +1):

399 #Increment priority

400

401

402 if seat == 0 or seat == 3:

403 highest_priority_assigned += 1

404 seating_plan[seat][row] = ([highest_priority_assigned ,0,

assign_luggage ()])

405

406 seating_plan[AISLE_INDEX]= [[-1,0] for _ in range(NUM_ROWS)]

407

408

Page 39 of 77 2022019

409 naughty_people ()

410 group_shit ()

411

412 def group_shit_two ():

413 for row in range(4,TWO_ROWS):

414 #Resets var

415 current_group_size = 0

416 current_group_priorty = []

417 current_group_people_added = 0

418

419

420

421 for seat in range (0,9):

422

423 #make sure we not in aisles

424 if (seat != 2 or seat !=4) and seating_plan[seat][row][PRIORITY] !=

-1:

425 #If not currently generating create a new group

426 if current_group_people_added == 0:

427 current_group_size = current_group_people_added = group_size

()

428 if current_group_people_added == 1:

429 current_group_people_added = 0

430 else:

431 current_group_priorty.append(seating_plan[seat][row][

PRIORITY])

432 current_group_people_added -=1

433

434

435 else: # Currently generating a group

436 current_group_priorty.append(seating_plan[seat][row][PRIORITY

])

437 current_group_people_added -=1

438

439 #If all people added to group

440 if current_group_people_added == 0:

441 #Loop back through people and send priority to average

442

443

444 gone_through_aisles = 0

445 for i in range(current_group_size):

446 #Go back through and adjust priority

447

448 #If gone through aisles add another

449 if (seat - i) == 2 or (seat - i) == 6:

450 gone_through_aisles = 1

451

452 seating_plan [(seat -(i+gone_through_aisles))][row][

PRIORITY] = round(sum(current_group_priorty) / len(current_group_priorty))

453 #Wide body boarding

454 def clear_aisles_widebody ():

455 global seating_plan

456

457

458 #Clear aisles

459 for i in range(WIDE_WING_SEATS):

460 if i % 7 == 3 and i != WIDE_WING_SEATS:

461 seating_plan[i]= [[-1,0] for _ in range(WIDE_WING_ROWS)]

462 #Clear front aisles

463 for k in range(WIDE_WING_SEATS):

Page 40 of 77 2022019

464 seating_plan[k][0] = [-1,0]

465

466 #Clear extra 9 on both sides

467 for k in range(1, 4):

468 for j in range (0,3):

469 seating_plan[j][k] = [-1,0]

470

471 #Clear extra 9 on both sides

472 for k in range(1, 4):

473 for j in range(WIDE_WING_SEATS -3, WIDE_WING_SEATS):

474 seating_plan[j][k] = [-1,0]

475 def naughty_people_wide ():

476

477 #Generate total amount of naughty boys

478 naughty_bois = math.ceil (((WIDE_WING_ROWS -1)*(WIDE_WING_SEATS -4) -18)*

NAUGHTY_BOY_COEFFICIENT)

479

480 for i in range(naughty_bois):

481

482 while True:

483 seat = random.randrange(WIDE_WING_SEATS)

484 row = random.randrange(WIDE_WING_ROWS)

485

486 if seating_plan[seat][row][PRIORITY] != -1:

487 seating_plan[seat][row][PRIORITY] = random.randrange(1,

highest_priority_assigned +1)

488 break

489 def group_shit_wide ():

490 for row in range(WIDE_WING_ROWS):

491 #Resets var

492 current_group_size = 0

493 current_group_priorty = []

494 current_group_people_added = 0

495

496

497 for current_aisle in range(0, WIDE_WING_SEATS ,7):

498 for seat in range (0,7):

499

500 #make sure we not in aisles

501 if seat != 3 and seating_plan[current_aisle+seat][row][

PRIORITY] != -1:

502 #If not currently generating create a new group

503 if current_group_people_added == 0:

504 current_group_size = current_group_people_added =

group_size ()

505 if current_group_people_added == 1:

506 current_group_people_added = 0

507 else:

508 current_group_priorty.append(seating_plan[

current_aisle+seat][row][PRIORITY])

509 current_group_people_added -=1

510

511

512 else: # Currently generating a group

513 current_group_priorty.append(seating_plan[

current_aisle+seat][row][PRIORITY])

514 current_group_people_added -=1

515

516 #If all people added to group

517 if current_group_people_added == 0:

Page 41 of 77 2022019

518 #Loop back through people and send priority to

average

519

520

521 gone_through_aisles = 0

522 for i in range(current_group_size):

523 #Go back through and adjust priority

524

525 #If gone through aisles add another

526 if (seat - i) == 3:

527 gone_through_aisles = 1

528

529 seating_plan [(seat -(i+gone_through_aisles))+

current_aisle][row][PRIORITY] = round(sum(current_group_priorty) / len(

current_group_priorty))

530 def reverse_wilma_widebody ():

531 global seating_plan

532 global highest_priority_assigned

533

534 highest_priority_assigned = 3

535

536 #Make an empty

537 seating_plan = [[[-1,0,0] for _ in range(WIDE_WING_ROWS)] for _ in range(

WIDE_WING_SEATS)]

538

539 for i in range(WIDE_WING_SEATS):

540 if i in [2,4,9,11,16,18,23,25]:

541 seating_plan[i]= [[3,0, assign_luggage ()] for _ in range(

WIDE_WING_ROWS)]

542 elif i in [1,5,8,12,15,19,22,26]:

543 seating_plan[i]= [[2,0, assign_luggage ()] for _ in range(

WIDE_WING_ROWS)]

544 elif i in [0,6,7,13,14,20,21,27]:

545 seating_plan[i]= [[1,0, assign_luggage ()] for _ in range(

WIDE_WING_ROWS)]

546

547

548 clear_aisles_widebody ()

549 naughty_people_wide ()

550 group_shit_wide ()

551 def random_deboard_widebody ():

552 global seating_plan

553 global highest_priority_assigned

554

555 highest_priority_assigned = 10

556

557 seating_plan = [[[random.randrange (1,10) ,0,assign_luggage ()] for _ in range

(WIDE_WING_ROWS)] for _ in range(WIDE_WING_SEATS)]

558

559 clear_aisles_widebody ()

560 group_shit_wide ()

561 def sections_widebody ():

562

563 global seating_plan

564

565 global highest_priority_assigned

566

567 highest_priority_assigned = 3

568 fjuk = []

569 for i in range(WIDE_WING_SEATS):

Page 42 of 77 2022019

570 aisles = []

571 for k in range (1,8):

572 aisles.append ([3,0, assign_luggage ()])

573 for k in range (8,12):

574 aisles.append ([2,0, assign_luggage ()])

575 for k in range(12, WIDE_WING_ROWS +1):

576 aisles.append ([1,0, assign_luggage ()])

577 fjuk.append(aisles)

578 seating_plan = fjuk

579

580

581

582 clear_aisles_widebody ()

583

584 naughty_people_wide ()

585 group_shit_wide ()

586 def back_to_front_widebody ():

587 global seating_plan

588 global highest_priority_assigned

589

590

591 #Create empty seating plan

592 seating_plan = [[[k+j,0, assign_luggage ()] for k in range(WIDE_WING_ROWS)]

for j in range(WIDE_WING_SEATS)]

593

594 highest_priority_assigned = WIDE_WING_SEATS+WIDE_WING_ROWS

595

596 clear_aisles_widebody ()

597

598 naughty_people_wide ()

599 group_shit_wide ()

600 def across_widebody ():

601 global seating_plan

602 global highest_priority_assigned

603

604

605 #Create empty seating plan

606 seating_plan = [[[k,0, assign_luggage ()] for k in range(WIDE_WING_ROWS)] for

j in range(WIDE_WING_SEATS)]

607

608 highest_priority_assigned = WIDE_WING_ROWS

609

610 clear_aisles_widebody ()

611

612 naughty_people_wide ()

613 group_shit_wide ()

614 def naughty_people_two ():

615

616 global seating_plan

617 global highest_priority_assigned

618

619 #Generate total amount of naughty boys

620 naughty_bois = math.ceil (((TWO_SEATS -2)*(TWO_A_ROWS+TWO_B_ROWS)+18)*

NAUGHTY_BOY_COEFFICIENT)

621

622 for i in range(naughty_bois):

623

624 while True:

625 seat = random.randrange(TWO_SEATS)

626 row = random.randrange(TWO_ROWS)

Page 43 of 77 2022019

627

628 if seating_plan[seat][row][PRIORITY] != -1:

629 seating_plan[seat][row][PRIORITY] = random.randrange(1,

highest_priority_assigned)

630 break

631 def generate_front_to_back_widebody ():

632 global seating_plan

633 global highest_priority_assigned

634

635 highest_priority_assigned = WIDE_WING_SEATS+WIDE_WING_ROWS

636 #Create empty seating plan

637 seating_plan = [[[highest_priority_assigned -(k+j),0,assign_luggage ()] for k

in range(WIDE_WING_ROWS)] for j in range(WIDE_WING_SEATS)]

638

639

640

641 clear_aisles_widebody ()

642

643 naughty_people_wide ()

644 group_shit_wide ()

645

646

647 def bag_shit_Two ():

648 global seating_plan

649 #Intalize bag amounts

650 lockers = [[[0 ,0] for _ in range(TWO_A_ROWS)],[[0,0] for _ in range(

TWO_B_ROWS)]]

651

652 #A first

653 for row in range(TWO_A_ROWS):

654

655 for seat in range(TWO_SEATS):

656

657 if seating_plan[seat][row][PRIORITY] != -1:

658 if seat <=3:

659 lockers [0][row][0] += seating_plan[seat][row][HAS_LUGGAGE]

660

661 elif seat > 3:

662 lockers [0][row][1] += seating_plan[seat][row][HAS_LUGGAGE]

663 #B second

664 for row in range(TWO_B_ROWS):

665

666 for seat in range(TWO_SEATS):

667

668 if seating_plan[seat][row+GAP_SIZE+TWO_A_ROWS][PRIORITY] != -1:

669 if seat <=3:

670 lockers [1][row][0] += seating_plan[seat][row+GAP_SIZE+

TWO_A_ROWS][HAS_LUGGAGE]

671

672 elif seat > 3:

673 lockers [1][row][1] += seating_plan[seat][row+GAP_SIZE+

TWO_A_ROWS][HAS_LUGGAGE]

674

675

676

677

678

679

680 return lockers

681 def two_first_class ():

Page 44 of 77 2022019

682 global seating_plan

683 global highest_priority_assigned

684

685 #Generate first class

686 seating_plan [0][0][0] = highest_priority_assigned

687 seating_plan [0][1][0] = highest_priority_assigned

688 seating_plan [0][2][0] = highest_priority_assigned

689 seating_plan [1][0][0] = highest_priority_assigned

690 seating_plan [1][1][0] = highest_priority_assigned

691 seating_plan [1][2][0] = highest_priority_assigned

692 seating_plan [3][0][0] = highest_priority_assigned

693 seating_plan [3][1][0] = highest_priority_assigned

694 seating_plan [3][2][0] = highest_priority_assigned

695 seating_plan [5][0][0] = highest_priority_assigned

696 seating_plan [5][1][0] = highest_priority_assigned

697 seating_plan [5][2][0] = highest_priority_assigned

698 seating_plan [7][0][0] = highest_priority_assigned

699 seating_plan [7][1][0] = highest_priority_assigned

700 seating_plan [7][2][0] = highest_priority_assigned

701 seating_plan [8][0][0] = highest_priority_assigned

702 seating_plan [8][1][0] = highest_priority_assigned

703 seating_plan [8][2][0] = highest_priority_assigned

704 #Two

705 def two_cleanup ():

706 global seating_plan

707 global highest_priority_assigned

708

709

710

711 #Clear aisles

712 seating_plan [2]= [[-1,0] for _ in range(TWO_ROWS)]

713 seating_plan [6]= [[-1,0] for _ in range(TWO_ROWS)]

714 #Tidy up first class

715 seating_plan [4][0] = [-1,0]

716 seating_plan [4][1] = [-1,0]

717 seating_plan [4][2] = [-1,0]

718

719

720 #Clear queues out

721 for k in range(TWO_SEATS):

722 for j in range(TWO_ROWS):

723 if j in [3, 18 ,19 ,20 ,42]:

724 seating_plan[k][j] = [-1,0]

725

726 def two_random ():

727 global seating_plan

728 global highest_priority_assigned

729

730 seating_plan = [[[random.randrange (1,10) ,0,assign_luggage ()] for _ in range(

TWO_ROWS)] for _ in range(TWO_SEATS)]

731

732 highest_priority_assigned = 10

733 two_first_class ()

734 two_cleanup ()

735 naughty_people_two ()

736 group_shit_two ()

737

738 def two_back_to_front ():

739 global seating_plan

740 global highest_priority_assigned

Page 45 of 77 2022019

741 highest_priority_assigned = 0

742 #Generate an empty plane

743 seating_plan = [[[0,0,0] for _ in range(TWO_ROWS)] for _ in range(TWO_SEATS)

]

744 for _ in range(TWO_SEATS):

745 for k in range(4, TWO_A_ROWS):

746

747 seating_plan[_][k] = [k,0, assign_luggage ()]

748

749 for _ in range(TWO_SEATS):

750 for k in (range(TWO_B_ROWS)):

751

752 seating_plan[_][(TWO_B_ROWS -k)+(TWO_A_ROWS+GAP_SIZE -1)] = [k,0,

assign_luggage ()]

753

754 highest_priority_assigned = TWO_B_ROWS

755

756 two_first_class ()

757 two_cleanup ()

758 naughty_people_two ()

759 group_shit_two ()

760

761 def two_front_to_back ():

762 global seating_plan

763 global highest_priority_assigned

764 highest_priority_assigned = 0

765 #Generate an empty plane

766 seating_plan = [[[0,0,0] for _ in range(TWO_ROWS)] for _ in range(TWO_SEATS)

]

767 for _ in range(TWO_SEATS):

768 for k in range(4, TWO_A_ROWS):

769

770 seating_plan[_][TWO_A_ROWS -k] = [k,0, assign_luggage ()]

771

772 for _ in range(TWO_SEATS):

773 for k in (range(TWO_B_ROWS)):

774

775 seating_plan[_][(k)+(TWO_A_ROWS+GAP_SIZE)] = [k,0, assign_luggage ()]

776

777 highest_priority_assigned = TWO_B_ROWS

778

779 two_first_class ()

780 two_cleanup ()

781 naughty_people_two ()

782 group_shit_two ()

783

784 def two_reverse_wilma_widebody ():

785 global seating_plan

786 global highest_priority_assigned

787

788 highest_priority_assigned = 2

789

790 #Make an empty

791 seating_plan = [[[-1,0,0] for _ in range(TWO_ROWS)] for _ in range(TWO_SEATS

)]

792

793 for i in range(TWO_SEATS):

794 if i in [1,3,5,7]:

795 seating_plan[i]= [[2,0, assign_luggage ()] for _ in range(TWO_ROWS)]

796 elif i in [0,4,8]:

Page 46 of 77 2022019

797 seating_plan[i]= [[1,0, assign_luggage ()] for _ in range(TWO_ROWS)]

798

799 two_first_class ()

800 two_cleanup ()

801 naughty_people_two ()

802 group_shit_two ()

803

804

805 def two_reverse_sections_360 ():

806 global seating_plan

807

808 global highest_priority_assigned

809

810 highest_priority_assigned = 3

811 fjuk = []

812 for i in range(TWO_SEATS):

813 aisles = []

814 for k in range (0,8):

815 aisles.append ([3,0, assign_luggage ()])

816 for k in range (8,13):

817 aisles.append ([2,0, assign_luggage ()])

818 for k in range (13 ,21):

819 aisles.append ([1,0, assign_luggage ()])

820 for k in range (21 ,28):

821 aisles.append ([1,0, assign_luggage ()])

822 for k in range (28 ,36):

823 aisles.append ([2,0, assign_luggage ()])

824 for k in range(36, TWO_ROWS):

825 aisles.append ([3,0, assign_luggage ()])

826 fjuk.append(aisles)

827 seating_plan = fjuk

828

829 two_first_class ()

830 two_cleanup ()

831 naughty_people_two ()

832 group_shit_two ()

833

834

835

836

837

838

839

840 #Logic

841 def check_locker_space_wide(luggage_number , current_row , seat , lockers):

842 # if passenger has no baggage

843 if luggage_number == 0:

844 return 0

845

846 sublocker = math.floor ((seat)/7)

847

848 if seat % 7 < 3:

849 nbins = lockers[sublocker][current_row -1][0]

850 lockers[sublocker][current_row -1][0] -= luggage_number

851

852 elif seat % 7 > 3:

853 nbins = lockers[sublocker][current_row -1][1]

854 lockers[sublocker][current_row -1][1] -= luggage_number

855

856 # derivations in writeup

Page 47 of 77 2022019

857 if luggage_number == 1:

858 t = (4) /(1 -(0.8*((nbins -2)))/6)

859 if luggage_number == 2:

860 t = (4) /(1 -(0.8*((nbins -2)))/6) + (2.25) /(1-((nbins -2))/6)

861

862 return t

863 def check_locker_space(luggage_number , current_row , down , lockers):

864 # if passenger has no baggage

865 if luggage_number == 0:

866 return 0

867

868 # if on right side of aisle

869 if down==True:

870

871 nbins = lockers[NUM_ROWS -current_row -1][1]

872 lockers[NUM_ROWS -current_row -1][1] -= luggage_number

873 else:

874

875 nbins = lockers[NUM_ROWS -current_row -1][0]

876 lockers[NUM_ROWS -current_row -1][0] -= luggage_number

877 if luggage_number == 1:

878 t = (4) /(1 -(0.8*((nbins -2)))/6)

879 if luggage_number == 2:

880 t = (4) /(1 -(0.8*((nbins -2)))/6) + (2.25) /(1-((nbins -2))/6)

881

882 return t

883 def check_locker_space_Two(luggage_number , current_row , seat , lockers ,sectionA):

884

885 if sectionA:

886 thingy = 0

887 else:

888 thingy = 1

889

890 # if passenger has no baggage

891 if luggage_number == 0:

892 return 0

893

894 # if on right side of aisle

895 if seat > 3:

896

897 nbins = lockers[thingy][current_row][1]

898 lockers[thingy][current_row][1] -= luggage_number

899 else:

900

901 nbins = lockers[thingy][current_row][0]

902 lockers[thingy][current_row][0] -= luggage_number

903 if luggage_number == 1:

904 t = (4) /(1 -(0.8*((nbins -2)))/6)

905 if luggage_number == 2:

906 t = (4) /(1 -(0.8*((nbins -2)))/6) + (2.25) /(1-((nbins -2))/6)

907

908 return t

909 def move_up(seat ,row):

910

911 if seating_plan[seat -1][row][0] == -1:

912 seating_plan[seat -1][row] = seating_plan[seat][row]

913 seating_plan[seat -1][row][1] = 0

914 seating_plan[seat][row] = [-1,0]

915 def move_down(seat ,row):

916

Page 48 of 77 2022019

917

918 if seating_plan[seat +1][row][0] == -1:

919 seating_plan[seat +1][row] = seating_plan[seat][row]

920 seating_plan[seat +1][row][1] = 0

921 seating_plan[seat][row] = [-1,0]

922 def aisle_take_above(row ,hello ,world):

923 #Move person from above into aisle

924 seating_plan[AISLE_INDEX][row] = seating_plan[AISLE_INDEX -1][row]

925 seating_plan[AISLE_INDEX -1][row] = [-1,0]

926

927 #Luggage

928 seating_plan[AISLE_INDEX][row][INTERNAL_COCK] = -locker_shit_type[

boarding_type](seating_plan[AISLE_INDEX][row][HAS_LUGGAGE], row , True , lockers

)

929 def aisle_take_below(row ,frick ,me):

930 #Move person from below into aisle

931 seating_plan[AISLE_INDEX][row] = seating_plan[AISLE_INDEX +1][row]

932 seating_plan[AISLE_INDEX +1][row] = [-1,0]

933

934

935 seating_plan[AISLE_INDEX][row][INTERNAL_COCK] = -locker_shit_type[

boarding_type](seating_plan[AISLE_INDEX][row][HAS_LUGGAGE], row , False ,

lockers)

936 def aisle_take_above_wide(row ,current_aisles ,uguil):

937 #Move person from above into aisle

938 #Luggage

939 seating_plan[current_aisles -1][row][INTERNAL_COCK] = -locker_shit_type[

boarding_type](seating_plan[current_aisles -1][row][HAS_LUGGAGE], row ,

current_aisles -1, lockers)

940

941 seating_plan[current_aisles][row] = seating_plan[current_aisles -1][row]

942 seating_plan[current_aisles -1][row] = [-1,0]

943 def aisle_take_above_Two(row ,current_aisles ,SectionA):

944 #Move person from above into aisle

945 #Luggage

946 if row != 3:

947 seating_plan[current_aisles -1][row][INTERNAL_COCK] = -locker_shit_type[

boarding_type](seating_plan[current_aisles -1][row][HAS_LUGGAGE], row -(GAP_SIZE

+TWO_A_ROWS), current_aisles -1, lockers ,SectionA)

948

949 seating_plan[current_aisles][row] = seating_plan[current_aisles -1][row]

950 seating_plan[current_aisles -1][row] = [-1,0]

951

952 def aisle_take_below_Two(row ,current_aisles ,sectionA):

953 #Move person from below into aisle

954 if row != 3:

955 seating_plan[current_aisles +1][row][INTERNAL_COCK] = -locker_shit_type[

boarding_type](seating_plan[current_aisles +1][row][HAS_LUGGAGE], row -(GAP_SIZE

+TWO_A_ROWS), current_aisles +1, lockers ,sectionA)

956

957 seating_plan[current_aisles][row] = seating_plan[current_aisles +1][row]

958 seating_plan[current_aisles +1][row] = [-1,0]

959

960 def aisle_take_below_wide(row ,current_aisles ,aszgasdhasdh):

961 #Move person from below into aisle

962 if row != 0:

963 seating_plan[current_aisles +1][row][INTERNAL_COCK] = -locker_shit_type[

boarding_type](seating_plan[current_aisles +1][row][HAS_LUGGAGE], row ,

current_aisles +1, lockers)

964

Page 49 of 77 2022019

965 seating_plan[current_aisles][row] = seating_plan[current_aisles +1][row]

966 seating_plan[current_aisles +1][row] = [-1,0]

967

968

969

970

971

972 def aisle_take_left(row ,current_aisles ,whythefucknot):

973

974 #Move person from right into aisle

975 seating_plan[current_aisles][row] = seating_plan[current_aisles][row -1]

976 seating_plan[current_aisles][row -1] = [-1,0]

977 seating_plan[current_aisles][row][INTERNAL_COCK] = 0

978 def aisle_take_right(row , idonot , careanymore):

979

980 #Move person from right into aisle

981 seating_plan[AISLE_INDEX][row] = seating_plan[AISLE_INDEX][row +1]

982 seating_plan[AISLE_INDEX][row +1] = [-1,0]

983 seating_plan[AISLE_INDEX][row][INTERNAL_COCK] = 0

984

985 def aisle_take_right_wide(row ,current_aisles ,whythefucknot):

986

987 #Move person from right into aisle

988 seating_plan[current_aisles][row] = seating_plan[current_aisles][row +1]

989 seating_plan[current_aisles][row +1] = [-1,0]

990 seating_plan[current_aisles][row][INTERNAL_COCK] = 0

991

992 #While loop

993 def off_the_plane(generation_method ,text):

994 global im ,fig

995 #isual shot

996

997 global seating_plan

998 global priority_weightings

999 global lockers

1000 test_cases = []

1001

1002

1003

1004

1005 for i in range(N_TEST_CASES):

1006 generation_method ()

1007 total_time =0

1008 left_plane = 0

1009 priority_weightings = generate_priorties(highest_priority_assigned)

1010 lockers = bag_shit_type[boarding_type]()

1011 if VISUALIZER:

1012 im,fig = render_type[boarding_type]()

1013

1014 while True:

1015 if boarding_type == TWO:

1016 #Exit square

1017 if seating_plan [2][41][PRIORITY] != -1 and seating_plan [2][41][

INTERNAL_COCK] >= TIME_TO_MOVE:

1018 #Empty square

1019 seating_plan [2][41] = [-1,0]

1020 left_plane += 1

1021

1022 if seating_plan [6][41][PRIORITY] != -1 and seating_plan [6][41][

INTERNAL_COCK] >= TIME_TO_MOVE:

Page 50 of 77 2022019

1023 #Empty square

1024 seating_plan [6][41] = [-1,0]

1025 left_plane += 1

1026 if seating_plan[TWO_SEATS -1][3][PRIORITY] != -1 and seating_plan[

TWO_SEATS -1][3][INTERNAL_COCK] >= TIME_TO_MOVE:

1027 #Empty square

1028 seating_plan[TWO_SEATS -1][3] = [-1,0]

1029 left_plane += 1

1030

1031

1032 #End code shot

1033 if left_plane == 249:

1034 test_cases.append(total_time)

1035 break

1036

1037 for current_aisle in (range(TWO_SEATS)):

1038 if seating_plan[current_aisle][3][PRIORITY] == -1:

1039

1040 priorities = [0,0,0,0]

1041 possible_moves = [aisle_take_above_Two ,

aisle_take_below_Two , aisle_take_right_wide ,aisle_take_left]

1042 total_move_possibilites = 0

1043

1044 #Get things to check

1045 is_person_above_moving = seating_plan[current_aisle

-1][3][PRIORITY] != -1 and seating_plan[current_aisle -1][3][INTERNAL_COCK] >=

TIME_TO_MOVE_PAST_SEAT

1046

1047 if is_person_above_moving:

1048 priorities [0] = priority_weightings[seating_plan[

current_aisle -1][3][PRIORITY]-1]

1049 total_move_possibilites +=1

1050 if current_aisle != 8:

1051 is_person_below_moving = False #seating_plan[

current_aisle +1][3][PRIORITY] != -1 and seating_plan[current_aisle +1][3][

INTERNAL_COCK] >= TIME_TO_MOVE_PAST_SEAT

1052 else: is_person_below_moving = 0

1053 if is_person_below_moving:

1054

1055 priorities [1] = 0 #priority_weightings[

seating_plan[current_aisle +1][3][PRIORITY]-1]

1056 total_move_possibilites +=1

1057 #Prevent indexing error

1058 if True: #row +1+ec != TWO_ROWS:

1059 is_person_right_moving = seating_plan[

current_aisle][3+1][PRIORITY] != -1 and seating_plan[current_aisle][3+1][

INTERNAL_COCK] >= TIME_TO_MOVE

1060 else:

1061 is_person_right_moving = 0

1062

1063 if is_person_right_moving and (current_aisle == 2 or

current_aisle == 6):

1064

1065 priorities [2] = priority_weightings[seating_plan[

current_aisle][3+1][PRIORITY]-1]

1066 total_move_possibilites +=1

1067 #ewginsdaogvnadsklbvasj nwklsfnwdsf

1068 if True: #row +1+ec != TWO_ROWS:

1069 is_person_left_moving = seating_plan[

current_aisle][3 -1][PRIORITY] != -1 and seating_plan[current_aisle][3 -1][

Page 51 of 77 2022019

INTERNAL_COCK] >= TIME_TO_MOVE

1070 else:

1071 is_person_right_moving = 0

1072

1073 if is_person_left_moving and (current_aisle == 2 or

current_aisle == 6) :

1074 priorities [3] = priority_weightings[seating_plan[

current_aisle][3 -1][PRIORITY]-1]

1075 total_move_possibilites +=1

1076

1077 #Decide who moves above and below

1078 if total_move_possibilites > 0:

1079 #Reset time

1080 seating_plan[current_aisle][3][INTERNAL_COCK] = 0

1081

1082 #frick knows what is happening here but it works

so it stays

1083 move = numpy.argwhere(priorities == numpy.amax(

priorities))

1084 possible_moves [(random.choice(move))[0]](3 ,

current_aisle ,False)

1085

1086 for current_aisle in range(2,TWO_SEATS ,4):

1087

1088 for row in reversed(range(0, TWO_B_ROWS)):

1089

1090 #extra constant

1091 ec = GAP_SIZE+TWO_A_ROWS

1092 #Check if aisles place is empty

1093 if seating_plan[current_aisle][row+ec][PRIORITY] == -1:

1094

1095 priorities = [0,0,0]

1096 possible_moves = [aisle_take_above_Two ,

aisle_take_below_Two , aisle_take_left]

1097 total_move_possibilites = 0

1098

1099 #Get things to check

1100 is_person_above_moving = seating_plan[current_aisle

-1][row+ec][PRIORITY] != -1 and seating_plan[current_aisle -1][row+ec][

INTERNAL_COCK] >= TIME_TO_MOVE_PAST_SEAT

1101

1102 if is_person_above_moving:

1103 priorities [0] = priority_weightings[seating_plan[

current_aisle -1][row+ec][PRIORITY]-1]

1104 total_move_possibilites +=1

1105

1106 is_person_below_moving = seating_plan[current_aisle

+1][row+ec][PRIORITY] != -1 and seating_plan[current_aisle +1][row+ec][

INTERNAL_COCK] >= TIME_TO_MOVE_PAST_SEAT

1107 if is_person_below_moving:

1108

1109 priorities [1] = priority_weightings[seating_plan[

current_aisle +1][row+ec][PRIORITY]-1]

1110 total_move_possibilites +=1

1111 #Prevent indexing error

1112 if True: #row +1+ec != TWO_ROWS:

1113 is_person_right_moving = seating_plan[

current_aisle][row -1+ec][PRIORITY] != -1 and seating_plan[current_aisle][row

-1+ec][INTERNAL_COCK] >= TIME_TO_MOVE

1114 else:

Page 52 of 77 2022019

1115 is_person_right_moving = 0

1116

1117 if is_person_right_moving:

1118

1119 priorities [2] = priority_weightings[seating_plan[

current_aisle][row+ec -1][PRIORITY]-1]

1120 total_move_possibilites +=1

1121

1122 #Decide who moves above and below

1123 if total_move_possibilites > 0:

1124 #Reset time

1125 seating_plan[current_aisle][row+ec][INTERNAL_COCK

] = 0

1126

1127 #frick knows what is happening here but it works

so it stays

1128 move = numpy.argwhere(priorities == numpy.amax(

priorities))

1129 possible_moves [(random.choice(move))[0]](row+ec ,

current_aisle ,False)

1130

1131

1132 for row in (range(0, TWO_A_ROWS)):

1133 if row != 3:

1134 #extra constant

1135

1136 #Check if aisles place is empty

1137 if seating_plan[current_aisle][row][PRIORITY] == -1:

1138

1139 priorities = [0,0,0,0]

1140 possible_moves = [aisle_take_above_Two ,

aisle_take_below_Two , aisle_take_right_wide ,aisle_take_left]

1141 total_move_possibilites = 0

1142

1143 #Get things to check

1144 is_person_above_moving = seating_plan[

current_aisle -1][row][PRIORITY] != -1 and seating_plan[current_aisle -1][row][

INTERNAL_COCK] >= TIME_TO_MOVE_PAST_SEAT

1145

1146 if is_person_above_moving:

1147 priorities [0] = priority_weightings[

seating_plan[current_aisle -1][row][PRIORITY]-1]

1148 total_move_possibilites +=1

1149

1150 is_person_below_moving = seating_plan[

current_aisle +1][row][PRIORITY] != -1 and seating_plan[current_aisle +1][row][

INTERNAL_COCK] >= TIME_TO_MOVE_PAST_SEAT

1151 if is_person_below_moving:

1152

1153 priorities [1] = priority_weightings[

seating_plan[current_aisle +1][row][PRIORITY]-1]

1154 total_move_possibilites +=1

1155 #Prevent indexing error

1156 if True: #row +1+ec != TWO_ROWS:

1157 is_person_right_moving = seating_plan[

current_aisle][row +1][PRIORITY] != -1 and seating_plan[current_aisle][row +1][

INTERNAL_COCK] >= TIME_TO_MOVE

1158 else:

1159 is_person_right_moving = 0

1160

Page 53 of 77 2022019

1161 if is_person_right_moving:

1162

1163 priorities [2] = priority_weightings[

seating_plan[current_aisle][row +1][PRIORITY]-1]

1164 total_move_possibilites +=1

1165 #ewginsdaogvnadsklbvasj nwklsfnwdsf

1166 if True: #row +1+ec != TWO_ROWS:

1167 is_person_left_moving = seating_plan[

current_aisle][row -1][PRIORITY] != -1 and seating_plan[current_aisle][row -1][

INTERNAL_COCK] >= TIME_TO_MOVE

1168 else:

1169 is_person_right_moving = 0

1170

1171 if is_person_left_moving and row == 3:

1172 priorities [3] = priority_weightings[

seating_plan[current_aisle][row -1][PRIORITY]-1]

1173 total_move_possibilites +=1

1174

1175 #Decide who moves above and below

1176 if total_move_possibilites > 0:

1177 #Reset time

1178 seating_plan[current_aisle][row][

INTERNAL_COCK] = 0

1179

1180 #frick knows what is happening here but it

works so it stays

1181 move = numpy.argwhere(priorities == numpy.

amax(priorities))

1182 possible_moves [(random.choice(move))[0]](row ,

current_aisle ,False)

1183

1184 #Move towards aisle

1185 for row in range(TWO_ROWS):

1186 if row!= 3:

1187 if seating_plan [0][row][INTERNAL_COCK] >=

TIME_TO_MOVE_PAST_SEAT:

1188 move_down(0,row)

1189 if seating_plan[TWO_SEATS -1][row][INTERNAL_COCK] >=

TIME_TO_MOVE_PAST_SEAT and seating_plan[TWO_SEATS -1][row][PRIORITY] != -1:

1190 move_up(TWO_SEATS -1,row)

1191 if seating_plan [4][row][INTERNAL_COCK] >=

TIME_TO_MOVE_PAST_SEAT:

1192 if random.randint (0,1) and seating_plan [3][row][

PRIORITY] == -1:

1193 move_up(4,row)

1194 elif seating_plan [5][row][PRIORITY] == -1:

1195 move_down (4,row)

1196

1197

1198

1199

1200

1201 for i in range(TWO_SEATS):

1202 for k in range(TWO_ROWS):

1203 seating_plan[i][k][INTERNAL_COCK] += TIME_STEP

1204

1205

1206

1207

1208

Page 54 of 77 2022019

1209

1210

1211

1212 elif boarding_type == WIDEBODY:

1213 #Exit square

1214 if seating_plan [0][0][PRIORITY] != -1 and seating_plan [0][0][

INTERNAL_COCK] >= TIME_TO_MOVE:

1215 #Empty square

1216 seating_plan [0][0] = [-1,0]

1217

1218 #End code shot

1219 left_plane += 1

1220 if left_plane == (WIDE_WING_ROWS -1)*(WIDE_WING_SEATS -4) -18:

1221 test_cases.append(total_time)

1222

1223 break

1224

1225 #Down queue do not touch 2am code

1226 for seat in range(WIDE_WING_SEATS):

1227

1228 #if can move something in

1229 if seating_plan[seat][0][PRIORITY] == -1:

1230

1231 priorities = [0,0]

1232 possible_moves = [aisle_take_below_wide ,

aisle_take_right_wide]

1233 total_move_possibilites = 0

1234

1235 #Check shot

1236 is_person_below_moving = seating_plan[seat][1][PRIORITY]

!= -1 and seating_plan[seat][1][INTERNAL_COCK] >= TIME_TO_MOVE_PAST_SEAT and

seat in [3,10,17,24]

1237 if is_person_below_moving:

1238

1239 priorities [1] = priority_weightings[seating_plan[seat

][1][PRIORITY]-1]

1240 total_move_possibilites +=1

1241 #Prevent indexing error

1242 if seat != WIDE_WING_SEATS -1:

1243 is_person_right_moving = seating_plan[seat +1][0][

PRIORITY] != -1 and seating_plan[seat +1][0][INTERNAL_COCK] >= TIME_TO_MOVE

1244 else:

1245 is_person_right_moving = 0

1246

1247 if is_person_right_moving:

1248

1249 priorities [0] = priority_weightings[seating_plan[seat

+1][0][PRIORITY]-1]

1250 total_move_possibilites +=1

1251

1252 #Decide who moves above and below

1253 if total_move_possibilites > 0:

1254 #Reset time

1255 seating_plan[seat][0][INTERNAL_COCK] = 0

1256

1257 #frick knows what is happening here but it works so

it stays

1258 move = numpy.argwhere(priorities == numpy.amax(

priorities))

1259 possible_moves [(random.choice(move))[0]](0 ,seat ,False

Page 55 of 77 2022019

)

1260

1261

1262

1263 for current_aisle in range(3, WIDE_WING_SEATS ,7):

1264

1265

1266

1267 for row in range(1, WIDE_WING_ROWS):

1268

1269

1270

1271 #Check if aisles place is empty

1272 if seating_plan[current_aisle][row][PRIORITY] == -1:

1273

1274 priorities = [0,0,0]

1275 possible_moves = [aisle_take_above_wide ,

aisle_take_below_wide , aisle_take_right_wide]

1276 total_move_possibilites = 0

1277

1278 #Get things to check

1279 is_person_above_moving = seating_plan[current_aisle

-1][row][PRIORITY] != -1 and seating_plan[current_aisle -1][row][INTERNAL_COCK]

>= TIME_TO_MOVE_PAST_SEAT

1280

1281 if is_person_above_moving:

1282 priorities [0] = priority_weightings[seating_plan[

current_aisle -1][row][PRIORITY]-1]

1283 total_move_possibilites +=1

1284

1285 is_person_below_moving = seating_plan[current_aisle

+1][row][PRIORITY] != -1 and seating_plan[current_aisle +1][row][INTERNAL_COCK]

>= TIME_TO_MOVE_PAST_SEAT

1286 if is_person_below_moving:

1287

1288 priorities [1] = priority_weightings[seating_plan[

current_aisle +1][row][PRIORITY]-1]

1289 total_move_possibilites +=1

1290 #Prevent indexing error

1291 if row != WIDE_WING_ROWS -1:

1292 is_person_right_moving = seating_plan[

current_aisle][row +1][PRIORITY] != -1 and seating_plan[current_aisle][row +1][

INTERNAL_COCK] >= TIME_TO_MOVE

1293 else:

1294 is_person_right_moving = 0

1295

1296 if is_person_right_moving:

1297

1298 priorities [2] = priority_weightings[seating_plan[

current_aisle][row +1][PRIORITY]-1]

1299 total_move_possibilites +=1

1300

1301 #Decide who moves above and below

1302 if total_move_possibilites > 0:

1303 #Reset time

1304 seating_plan[current_aisle][row][INTERNAL_COCK] =

0

1305

1306 #frick knows what is happening here but it works

so it stays

Page 56 of 77 2022019

1307 move = numpy.argwhere(priorities == numpy.amax(

priorities))

1308 possible_moves [(random.choice(move))[0]](row ,

current_aisle ,False)

1309

1310

1311 # I fricking HATE INDENDATION

1312

1313

1314 #Get total amount of move posibilites

1315 #total_move_possibilites = is_person_above_moving +

is_person_below_moving + is_person_right_moving

1316

1317

1318 for current_aisle in range(0, WIDE_WING_SEATS ,7):

1319

1320

1321 # Move down

1322 for seat in reversed(range (0,2)):

1323 # Loops through all 37 rows

1324

1325 #Move towards aisle

1326 for row in range(0, WIDE_WING_ROWS):

1327 if seating_plan[seat+current_aisle][row][

INTERNAL_COCK] >= TIME_TO_MOVE_PAST_SEAT:

1328 move_down(seat+current_aisle ,row)

1329

1330 #Incrasese internal clock

1331

1332

1333 # Move up

1334 for seat in range (5,7):

1335 # Loops through all 37 rows

1336

1337 #Move towards aisle

1338 for row in range(0, WIDE_WING_ROWS):

1339 if seating_plan[seat+current_aisle][row][

INTERNAL_COCK] >= TIME_TO_MOVE_PAST_SEAT:

1340 move_up(seat+current_aisle ,row)

1341 #Incrasese internal clock

1342 for i in range(WIDE_WING_SEATS):

1343 for k in range(WIDE_WING_ROWS):

1344 seating_plan[i][k][INTERNAL_COCK] += TIME_STEP

1345

1346

1347 elif boarding_type == NORMAL:

1348

1349 #Exit square

1350 if seating_plan[AISLE_INDEX][0][PRIORITY] != -1 and seating_plan

[3][0][INTERNAL_COCK] >= TIME_TO_MOVE:

1351 #Empty square

1352 seating_plan[AISLE_INDEX][0] = [-1,0]

1353

1354 #End code shot

1355 left_plane += 1

1356 if left_plane == NUM_ROWS*NUM_SEATS:

1357 test_cases.append(total_time)

1358

1359 break

1360

Page 57 of 77 2022019

1361

1362

1363 #Aisle handling code

1364 for row in range(0,NUM_ROWS):

1365 #Check if aisles place is empty

1366 if seating_plan[AISLE_INDEX][row][PRIORITY] == -1:

1367

1368

1369 priorities = [0,0,0]

1370 possible_moves = [aisle_take_above , aisle_take_below ,

aisle_take_right]

1371 total_move_possibilites = 0

1372

1373 #Get things to check

1374 is_person_above_moving = seating_plan[AISLE_INDEX -1][row

][PRIORITY] != -1 and seating_plan[AISLE_INDEX -1][row][INTERNAL_COCK] >=

TIME_TO_MOVE_PAST_SEAT

1375

1376 if is_person_above_moving:

1377 priorities [0] = priority_weightings[seating_plan[

AISLE_INDEX -1][row][PRIORITY]-1]

1378 total_move_possibilites +=1

1379

1380 is_person_below_moving = seating_plan[AISLE_INDEX +1][row

][PRIORITY] != -1 and seating_plan[AISLE_INDEX +1][row][INTERNAL_COCK] >=

TIME_TO_MOVE_PAST_SEAT

1381 if is_person_below_moving:

1382

1383 priorities [1] = priority_weightings[seating_plan[

AISLE_INDEX +1][row][PRIORITY]-1]

1384 total_move_possibilites +=1

1385

1386 #Prevent indexing error

1387 if row != NUM_ROWS -1:

1388 is_person_right_moving = seating_plan[AISLE_INDEX][

row +1][PRIORITY] != -1 and seating_plan[AISLE_INDEX][row +1][INTERNAL_COCK] >=

TIME_TO_MOVE

1389 else:

1390 is_person_right_moving = 0

1391

1392 if is_person_right_moving:

1393

1394 priorities [2] = priority_weightings[seating_plan[

AISLE_INDEX][row +1][PRIORITY]-1]

1395 total_move_possibilites +=1

1396

1397

1398 #Get total amount of move posibilites

1399 #total_move_possibilites = is_person_above_moving +

is_person_below_moving + is_person_right_moving

1400

1401 #Decide who moves above and below

1402 if total_move_possibilites > 0:

1403 #Reset time

1404 seating_plan[AISLE_INDEX][row][INTERNAL_COCK] = 0

1405

1406 #frick knows what is happening here but it

works so it stays

1407 move = numpy.argwhere(priorities == numpy.amax(

priorities))

Page 58 of 77 2022019

1408 possible_moves [(random.choice(move))[0]](row ,False ,

False)

1409

1410

1411

1412 # Move down

1413 for seat in reversed(range (0,2)):

1414 # Loops through all 37 rows

1415

1416 #Move towards aisle

1417 for row in range(0,NUM_ROWS):

1418 if seating_plan[seat][row][INTERNAL_COCK] >=

TIME_TO_MOVE_PAST_SEAT:

1419 move_down(seat ,row)

1420 #Incrasese internal clock

1421

1422

1423 # Move up

1424 for seat in range (5,7):

1425 # Loops through all 37 rows

1426

1427 #Move towards aisle

1428 for row in range(0,NUM_ROWS):

1429 if seating_plan[seat][row][INTERNAL_COCK] >=

TIME_TO_MOVE_PAST_SEAT:

1430 move_up(seat ,row)

1431 #Incrasese internal clock

1432

1433 for i in range(NUM_SEATS +1):

1434 for k in range(NUM_ROWS):

1435 seating_plan[i][k][INTERNAL_COCK] += TIME_STEP

1436

1437

1438

1439

1440

1441 total_time += TIME_STEP

1442

1443 #Update render comment out if not using

1444 if VISUALIZER: update_render(seating_plan)

1445 print(text + str(sum(test_cases)/len(test_cases)))

1446 rows.append(test_cases)

1447 return test_cases

1448 #Types

1449 render_type = [intalize_render ,intalize_render_widebody ,intalize_render_two_thing

]

1450 bag_shit_type = [bag_shit , bag_shit_wide ,bag_shit_Two]

1451 locker_shit_type = [check_locker_space ,check_locker_space_wide ,

check_locker_space_Two]

1452 #What thing to do

1453 NORMAL = 0

1454 WIDEBODY = 1

1455 TWO = 2

1456 #Test stuff

1457 N_TEST_CASES = 50

1458 VISUALIZER = True

1459 TIME_STEP = 0

1460 boarding_type = TWO

1461 #Data csv

1462 import csv

Page 59 of 77 2022019

1463 fields = []

1464 rows = []

1465 index = []

1466 #Add the indexing

1467 for i in range(N_TEST_CASES):

1468 index.append(i)

1469

1470 rows.append(index)

1471 #Vroom

1472 seating_plan = []

1473

1474 ’’’

1475 #Flat body

1476 off_the_plane(random_deboard , ’Random: ’)

1477 off_the_plane(sections , ’Sections: ’)

1478 off_the_plane(reverse_wilma , ’Reverse Wilma: ’)

1479 off_the_plane(generate_front_to_back , ’Front to back Row: ’)

1480 off_the_plane(back_to_front , ’Back to Front Row: ’)

1481 # field names add whatever field names that you are creating data for

1482 fields = [’Index ’,’Random Group Adjusted ’, ’Front to back - sections ’, ’Reverse

Wilma ’, ’Front to Back Row ’, ’Back to Front Row ’]

1483 file_name = ’narrow.csv’

1484

1485

1486 #Wide body

1487 off_the_plane(random_deboard_widebody , ’Random: ’)

1488 off_the_plane(sections_widebody , ’Sections: ’)

1489 off_the_plane(reverse_wilma_widebody , ’Reverse Wilma: ’)

1490 off_the_plane(generate_front_to_back_widebody , ’Front seat to back seat: ’)

1491 off_the_plane(back_to_front_widebody , ’Back seat to Front seat: ’)

1492 off_the_plane(across_widebody , ’Across: ’)

1493 # field names add whatever field names that you are creating data for

1494 fields = [’Index ’,’Random Group Adjusted ’, ’Front to back - sections ’, ’Reverse

Wilma ’, ’Front to Back Row ’, ’Back to Front Row ’, ’Across ’]

1495 file_name=’widebody.csv’

1496 ’’’

1497 # field names add whatever field names that you are creating data for

1498 fields = [’Index’,’Back to front’, ’Sections ’, ’Random ’, ’Reverse Wilma’, ’Front

to back’]

1499 off_the_plane(two_reverse_sections_360 , ’back to front ’)

1500 #off_the_plane(two_reverse_sections_360 , ’Sections ’)

1501 #

1502 #off_the_plane(two_front_to_back , ’front to back ’)

1503 #off_the_plane(two_reverse_wilma_widebody , ’reverse wilma ’)

1504 #off_the_plane(two_random , ’random ’)

1505 file_name=’twoaisles.csv’

1506

1507 ’’’

1508 nbsensitivity = []

1509

1510 for i in range (0,41):

1511 NAUGHTY_BOY_COEFFICIENT = (i*2.5) /100

1512

1513 # put method wanted in here

1514 nbsensitivity.append(off_the_plane(back_to_front , ’back to front: ’))

1515

1516 print(’for test with NB coefficient {}’. format ((i*2.5) /100))

1517 ’’’

1518 ’’’

1519 #Makes the shotinto colums honestly magic

Page 60 of 77 2022019

1520 rows = zip(*rows)

1521 #Create the rows

1522 with open(file_name , ’w’, newline=’’) as f:

1523

1524 # using csv.writer method from CSV package

1525 write = csv.writer(f)

1526

1527 write.writerow(fields)

1528

1529 write.writerows(rows)

1530 ’’’

Appendix F

1 import random

2 import matplotlib.pyplot as plt

3 import numpy

4 import math

5

6 # visualizer things

7

8 # render stuff that I don’t understand

9 def intalize_render ():

10

11 global plane

12

13 #Absolute mess of code

14 image = []

15 for i in range(NUM_SEATS+len(AISLES)):

16 subimage = []

17 for k in range(NUM_ROWS):

18 if k % 2 == 0:

19 subimage.append (-1)

20 else:

21 subimage.append (0)

22

23 image.append(subimage)

24

25

26 fig ,ax = plt.subplots (1,1)

27 plt.set_cmap(’OrRd’)

28 print(image)

29 image = numpy.array(image)

30

31 im = ax.imshow(image)

32 number_of_runs = range(1,NUM_ROWS) # use your actual number_of_runs

33 ax.set_xticks(number_of_runs , minor=False)

34 ax.xaxis.grid(True , which=’major’)

35

36

37

38

39 ax.set_yticks(numpy.arange (0.5, NUM_SEATS+len(AISLES)+.5, 1).tolist (), minor=

False)

40 ax.yaxis.grid(True , which=’major’)

41

42 if plane == ’wide wing’:

43 ax.set_yticklabels ([’A’,’B’,’C’,’Aisle’,’D’,’E’,’F’,’G’,’H’,’I’,’Aisle’,’

J’,’K’,’L’,’M’,’N’,’O’,’Aisle ’,’P’,’Q’,’R’,’S’,’T’,’U’,’Aisle ’,’V’,’W’,’X’])

Page 61 of 77 2022019

44 elif plane == ’narrow body’:

45 ax.set_yticklabels ([’Row A’,’Row B’,’Row C’,’Aisle’,’Row D’,’Row E’,’Row

F’])

46 elif plane == ’two entrance two aisle’:

47 ax.set_yticklabels ([’Row A’,’Row B’,’Aisle’,’Row C’,’Row D’,’Row E’,’

Aisle’,’Row F’,’Row G’])

48 ax.set_ylim(top =-0.5)

49

50

51 ax.set_xticks(numpy.arange (0.5, NUM_ROWS +.5, 1).tolist (), minor=False)

52 ax.xaxis.grid(True , which=’major’)

53

54 xticklist = []

55 #Create list of numbers between

56 for i in range(NUM_ROWS):

57 if ((i+1) % 5 == 0) and (i != 0):

58 xticklist.append(str(i+1))

59 else:

60 xticklist.append(’’)

61

62 ax.set_xticklabels(xticklist)

63 ax.set_xlim(left =-0.5)

64

65 return im ,fig

66 def update_render(seat_plan):

67

68 visualizer = []

69 for i,column in enumerate(seat_plan):

70 visualizer.append ([])

71 for seat in column:

72 if i not in AISLES:

73 if seat != -1:

74 visualizer[i]. append (0)

75 else: visualizer[i]. append (-1)

76 else:

77 if seat != ’’:

78 visualizer[i]. append (0)

79 else: visualizer[i]. append (-1)

80

81

82

83 im.set_data(visualizer)

84 fig.canvas.draw_idle ()

85 plt.pause (0.01)

86

87

88

89

90

91

92

93

94

95 # --------

96 # stuff to board the plane with (given a boarding queue)

97 # --------

98

99 # calculate time taken to get to seat if someone in the way

100 def get_past_people(seating_plan , passenger , current_row):

101

Page 62 of 77 2022019

102 # number of people blocking seats

103 N=0

104 time_to_stop_blocking_aisle = 0

105

106

107 # aisle seat

108 for aisle in AISLES:

109 if abs(passenger [1] - aisle) == 1:

110 time_to_stop_blocking_aisle += TIME_TO_MOVE_PAST_SEAT

111 # middle or window seat: people are in the way

112 else:

113

114 for aisle in AISLES:

115

116 if passenger [1]-aisle == -3:

117

118

119 # if aisle seat taken IMPORTANT to check aisle seat first so f is

maximised

120 if seating_plan[passenger [1]+1][NUM_ROWS -current_row -1] != -1:

121 N+=1

122 f=1

123 # if middle seat taken

124 if seating_plan[passenger [1]+2][NUM_ROWS -current_row -1] != -1:

125 N+=1

126 f=2

127

128 break

129

130 elif passenger [1]- aisle == -2:

131

132 # if aisle seat taken

133 if seating_plan[passenger [1]+1][NUM_ROWS -current_row -1] != -1:

134 N+=1

135 f=1

136

137 # window seat F

138 elif passenger [1]- aisle == 3:

139 # if aisle seat taken IMPORTANT to check aisle seat first so f is

maximised

140 if seating_plan[passenger [1] -2][NUM_ROWS -current_row -1] != -1:

141 N+=1

142 f=1

143 # if middle seat taken

144 if seating_plan[passenger [1] -1][NUM_ROWS -current_row -1] != -1:

145 N+=1

146 f=2

147

148 # middle seat B

149 elif passenger [1] == 2:

150 # if aisle seat taken

151 if seating_plan[passenger [1] -1][NUM_ROWS -current_row -1] != -1:

152 N+=1

153 f=1

154

155

156 if N==0:

157 time_to_stop_blocking_aisle = TIME_TO_MOVE_PAST_SEAT

158 else:

159 time_to_stop_blocking_aisle += TIME_TO_SIT_OR_STAND +

Page 63 of 77 2022019

TIME_TO_MOVE_PAST_SEAT *(N+f+1)

160

161 return time_to_stop_blocking_aisle , N

162 # stow in overhead lockers

163 def check_locker_space(passenger , current_row , lockers , passengers_loaded_bags ,

aisle =0):

164

165 # if passenger has no baggage

166 if passenger [2] == 0:

167 return 0

168

169 # if on right side of aisle

170

171 for aisle in AISLES:

172

173 if abs(passenger [1]- aisle) <= 3:

174

175 correct_aisle = aisle

176 break

177

178

179 if passenger [1] > correct_aisle:

180 if [passenger [0], passenger [1]] not in passengers_loaded_bags:

181 nbins = lockers[AISLES.index(correct_aisle)][NUM_ROWS -current_row

-1][1]

182 lockers[AISLES.index(correct_aisle)][NUM_ROWS -current_row -1][1] +=

passenger [2]

183 passengers_loaded_bags.append ([passenger [0], passenger [1]])

184 else:

185 nbins = lockers[AISLES.index(correct_aisle)][NUM_ROWS -current_row

-1][0] - passenger [2]

186 else:

187

188 if [passenger [0], passenger [1]] not in passengers_loaded_bags:

189 nbins = lockers[AISLES.index(correct_aisle)][NUM_ROWS -current_row

-1][0]

190 lockers[AISLES.index(correct_aisle)][NUM_ROWS -current_row -1][0] +=

passenger [2]

191 passengers_loaded_bags.append ([passenger [0], passenger [1]])

192 else:

193 nbins = lockers[AISLES.index(correct_aisle)][NUM_ROWS -current_row

-1][0] - passenger [2]

194 # derivations in writeup

195

196

197 if passenger [2] == 1:

198 t = (4) /(1 -(0.8* nbins)/6)

199 if passenger [2] == 2:

200 t = (4) /(1 -(0.8* nbins)/6) + (2.25) /(1-(nbins +1)/6)

201

202 return t

203

204 # board the plane

205 def board_the_plane(boardingQueue , family=False):

206 # initialize seating plan , top queue (if multiple aisles) and overhead

lockers

207 seating_plan = [[-1 for _ in range(NUM_ROWS)] for _ in range(NUM_SEATS + len

(AISLES))]

208 for aisle in AISLES:

209 seating_plan[aisle]=[’’ for _ in range(NUM_ROWS)]

Page 64 of 77 2022019

210 top_queue = [’’ for _ in range(NUM_SEATS+len(AISLES))]

211 lockers = [[[0 ,0] for i in range(NUM_ROWS)] for j in range(len(AISLES))]

212 seated = []

213 passengers_loaded_bags = []

214

215 n_passengers = len(boardingQueue)

216

217 total_time =0

218

219 # this is false for all scenarios except where families are prioritized

220 if family == False:

221 time_to_move = TIME_TO_MOVE

222 else:

223 time_to_move = FAMILY_TIME_TO_MOVE

224

225 while True:

226

227 #print(seating_plan)

228

229 # loop through top queue

230 for current_column , passenger in enumerate(reversed(top_queue)):

231

232 if passenger != ’’:

233

234 # increase internal clock

235 passenger [3] += TIME_STEP

236

237 # check if passenger in right aisle and thus they can seat

238 if (NUM_SEATS+len(AISLES)-current_column -1) in AISLES and abs(

passenger [1]-(NUM_SEATS+len(AISLES)-current_column -1)) <=AISLES [0]+1:

239

240 # move into aisle

241 if seating_plan[NUM_SEATS+len(AISLES)-current_column -1][0] ==

’’ and passenger [3] >= time_to_move:

242 #reset internal clock

243 passenger [3]=0

244 seating_plan[NUM_SEATS+len(AISLES)-current_column -1][0] =

passenger

245 top_queue[NUM_SEATS+len(AISLES)-current_column -1]=’’

246

247 else:

248 # if passenger in front has moved

249 if top_queue[NUM_SEATS+len(AISLES)-current_column] == ’’ and

passenger [3] >= time_to_move:

250 # move people along

251 top_queue[NUM_SEATS+len(AISLES)-current_column] =

passenger

252 top_queue[NUM_SEATS+len(AISLES)-current_column -1] = ’’

253

254 # reset internal clock

255 passenger [3] = 0

256

257 for aisle in AISLES:

258

259 # loop through aisle from back to front

260 for current_row ,passenger in enumerate(reversed(seating_plan[aisle]))

:

261

262 if passenger != ’’:

263

Page 65 of 77 2022019

264 # increase internal clock

265 #print(seating_plan[aisle])

266 passenger [3] += TIME_STEP

267

268 # check if passenger in right row and thus they can seat

269 if passenger [0] == NUM_ROWS - current_row:

270

271 # if passenger has baggage

272 time_to_stow = check_locker_space(passenger , current_row ,

lockers ,passengers_loaded_bags)

273

274

275 # time it takes to stop blocking aisle and number of

people in the way

276 try:

277 time_to_stop_blocking_aisle=passenger [5]

278 except:

279 time_to_stop_blocking_aisle , N = get_past_people(

seating_plan , passenger , current_row)

280 passenger.append(time_to_stop_blocking_aisle)

281

282

283 # make sure there is an empty space

284 if N==2 and current_row != 0 and seating_plan[aisle][

NUM_ROWS -current_row] != ’’ and current_row != 0:

285 time_to_wait_for_spot_in_aisle += time_to_move -

passenger [3]

286 else:

287 time_to_wait_for_spot_in_aisle =0

288

289

290 # if time to wait has finished i.e. SIT DOWN BE HUMBLE

291 if passenger [3] >= time_to_stop_blocking_aisle +

time_to_stow + time_to_wait_for_spot_in_aisle:

292

293 seating_plan[passenger [1]][passenger [0] -1] =

passenger

294 seated.append(passenger)

295 #print(seated)

296

297 # set queue place to empty

298 seating_plan[aisle][NUM_ROWS -current_row -1]=’’

299

300

301

302 else:

303 # if passenger in front has moved

304 if seating_plan[aisle][NUM_ROWS -current_row] == ’’ and

passenger [3] >= time_to_move:

305 # move people along

306 seating_plan[aisle][NUM_ROWS -current_row] = passenger

307 seating_plan[aisle][NUM_ROWS -current_row -1] = ’’

308

309 # reset internal clock

310 seating_plan[aisle][NUM_ROWS - current_row][3] = 0

311

312 if VISUALIZER: update_render(seating_plan)

313

314

315 total_time += TIME_STEP

Page 66 of 77 2022019

316

317 if len(seated) == n_passengers:

318 return total_time

319

320

321 if top_queue [0] == ’’ and len(boardingQueue)!=0:

322

323

324 # only considered in method where families board first.

325 if family == True and boardingQueue [0] == ’b’:

326 time_to_move = NON_FAMILY_TIME_TO_MOVE

327 boardingQueue.pop(0)

328

329 #Set first place in isle to the first passenger in the seat data

seating_plan [3] then remove it from seat data

330 top_queue [0] = boardingQueue [0]

331 boardingQueue.pop(0)

332

333

334 # luggage

335 def assign_luggage ():

336 return random.choices ([0,1,2], weights=BAG_COEFFICIENT , k=1) [0]

337

338 # naughty boy

339 def is_not_disobedient ():

340 return random.randrange (100) > NAUGHTY_BOY_COEFFICIENT *100

341 # create a group size

342 def group_size(group_weights):

343

344 return random.choices ([1,2,3], weights=group_weights , k=1) [0]

345

346 # return average of list

347 def average(x):

348 return sum(x)/len(x)

349

350

351

352

353

354

355

356 # create order of boarding

357 def create_boarding_order_for_section_but_with_groups(boarding_section ,

other_section1 , other_section2 , start_row , end_row):

358 current_group_member = 0

359 current_group_section = 1

360 current_group_size = 1

361 boarding_section.append ([])

362

363 for row in range(start_row ,end_row +1):

364 for seat in range(0, NUM_SEATS+len(AISLES)):

365

366 if seat not in AISLES:

367

368 current_group_member += 1

369

370 if current_group_section == 1:

371 boarding_section [-1]. append ([row ,seat ,assign_luggage () ,0])

372 elif current_group_section == 2:

373 other_section1 [-1]. append ([row ,seat ,assign_luggage () ,0])

Page 67 of 77 2022019

374 elif current_group_section == 3:

375 other_section2 [-1]. append ([row ,seat ,assign_luggage () ,0])

376

377

378 if current_group_member == current_group_size:

379

380

381 for aisle in AISLES:

382

383

384 if seat -aisle in [2,3]:

385 if current_group_section == 1:

386 boarding_section [-1]. reverse ()

387 elif current_group_section == 2:

388 other_section1 [-1]. reverse ()

389 elif current_group_section == 3:

390 other_section2 [-1]. reverse ()

391

392 if seat -aisle in [-3,-2,1]:

393 current_group_size = group_size ((

SINGLE_PRINGLE_COEFFICIENT ,COUPLES_COEFFIENCT ,THREESOME_COEFFICIENT))

394 elif seat -aisle in [-1,2]:

395 current_group_size = group_size ((

SINGLE_PRINGLE_COEFFICIENT ,COUPLES_COEFFIENCT ,0))

396 elif seat == 6:

397 current_group_size = 1

398

399 current_group_member = 0

400

401

402 if is_not_disobedient ():

403 current_group_section = 1

404 boarding_section.append ([])

405

406

407 # else they try board during different sections

408 else:

409 if random.randrange (100) < 50:

410 current_group_section = 2

411 other_section1.append ([])

412 else:

413 current_group_section = 3

414 other_section2.append ([])

415

416

417

418

419

420 # create order of boarding for doing windows first

421 def create_boarding_order_for_aisle(boarding_section , other_section1 ,

other_section2 , seats):

422 for seat in seats:

423

424 for row in range(1,NUM_ROWS +1):

425

426 # if passenger is not useless

427 if is_not_disobedient ():

428 boarding_section.append ([row , seat , assign_luggage (), 0])

429 # else they try board during different sections

430 else:

Page 68 of 77 2022019

431 if random.randrange (100) < 50:

432 other_section1.append ([row , seat , assign_luggage (), 0])

433 else:

434 other_section2.append ([row , seat , assign_luggage (), 0])

435

436 # create order of boarding for doing windows first using groups

437 def create_boarding_order_for_aisle_but_with_groups(boarding_section ,

other_section1 , other_section2 , seats):

438

439

440 for seat in seats:

441 # window seats

442 for row in range(1,NUM_ROWS +1):

443

444

445 # check if item in group already appended

446 if (not any([row ,seat] in x for x in boarding_section)

447 and not any([row ,seat] in x for x in other_section1)

448 and not any([row ,seat] in x for x in other_section2)):

449

450 # if passenger is not useless

451 if is_not_disobedient ():

452

453 for aisle in AISLES:

454

455 if aisle -seat == 3:

456

457 current_group_size = group_size ((70 ,50 ,20))

458

459 if current_group_size == 3:

460 boarding_section.append ([[row , seat],[row , seat

+1],[row , seat +2]])

461 elif current_group_size == 2:

462 boarding_section.append ([[row , seat],[row , seat

+1]])

463 else:

464 boarding_section.append ([[row , seat]])

465 elif aisle -seat ==-3:

466 current_group_size = group_size ((70 ,50 ,20))

467

468 if current_group_size == 3:

469 boarding_section.append ([[row , seat],[row , seat

-1],[row , seat -2]])

470 elif current_group_size == 2:

471 boarding_section.append ([[row , seat],[row , seat

-1]])

472 else:

473 boarding_section.append ([[row , seat]])

474

475 elif aisle -seat ==2:

476 current_group_size = group_size ((80 ,40 ,0))

477 if current_group_size == 2:

478 boarding_section.append ([[row , seat],[row , seat

+1]])

479 else:

480 boarding_section.append ([[row , seat]])

481 elif aisle -seat ==-2:

482 current_group_size = group_size ((80 ,40 ,0))

483 if current_group_size == 2:

484 boarding_section.append ([[row , seat],[row , seat

Page 69 of 77 2022019

-1]])

485 else:

486 boarding_section.append ([[row , seat]])

487

488 else: boarding_section.append ([[row , seat]])

489

490 break

491

492 # else they try board during different sections

493 else:

494 if random.randrange (100) < 50:

495 other_section1.append ([[row , seat]])

496 else:

497 other_section2.append ([[row , seat]])

498

499

500

501 # reduce boarding queue capacity due to Covid

502 def cull_boarding_queue(boarding_queue):

503 #this function has two aims: reduce capacity due to COVID , and remove any

seats not included in planes

504

505 # first see if need to cull the seats that would be in grid of planes , but

not there

506 # remove them here as easier than having to not add them in the first place

in every method

507 global plane

508 if plane == ’wide wing’:

509 for index ,passenger in enumerate(boarding_queue):

510 # Seats A B C V W X in rows 1-3

511 if passenger [0]-1 in [0,1,2] and passenger [1] in [0,1,2,25,26,27]:

512 del boarding_queue[index]

513 elif plane == ’narrow body’:

514 for index ,passenger in enumerate(boarding_queue):

515 # Row 1 seats D E F

516 if passenger [0]-1 in [0] and passenger [1] in [4,5,6]:

517 del boarding_queue[index]

518 if COVID_CAPACITY ==0:

519 return boarding_queue

520 target_to_kill = math.floor((COVID_CAPACITY)*NUM_SEATS)

521 for row in range(NUM_ROWS):

522

523 killed = 0

524 for index ,passenger in enumerate(boarding_queue):

525 if passenger [0] == row:

526 killed += 1

527 del boarding_queue[index]

528 if killed == target_to_kill:

529 break

530 return boarding_queue

531

532

533

534 # ----------------

535 # BOARDING METHODS

536 # ----------------

537

538 # boarding in random order

539 def random_boarding ():

540

Page 70 of 77 2022019

541 test_cases = []

542 for _ in range(N_TEST_CASES):

543 boardingQueue = []

544 for row in range(1,NUM_ROWS +1):

545 for seat in range(NUM_SEATS+len(AISLES)):

546

547 # assign bag based on probability that passenger has bag

548 if seat not in AISLES: boardingQueue.append ([row ,seat ,

assign_luggage () ,0])

549

550 random.shuffle(boardingQueue)

551

552 test_cases.append(board_the_plane(boardingQueue , AISLES))

553

554 print(’Random: ’, sum(test_cases)/len(test_cases))

555

556

557

558

559 def random_boarding_with_groups ():

560

561 test_cases = []

562 for _ in range(N_TEST_CASES):

563 boardingQueue = [[]]

564

565 current_group_member =0

566 current_group_size = group_size ((SINGLE_PRINGLE_COEFFICIENT ,

COUPLES_COEFFIENCT ,THREESOME_COEFFICIENT))

567

568 for row in range(1,NUM_ROWS +1):

569

570

571 for seat in range(0, NUM_SEATS+len(AISLES)):

572

573 if seat not in AISLES: boardingQueue [-1]. append ([row ,seat ,

assign_luggage () ,0])

574

575 current_group_member += 1

576

577 if current_group_member == current_group_size:

578

579 for aisle in AISLES:

580

581

582 if seat -aisle in [2,3]:

583 boardingQueue [-1]. reverse ()

584

585 if seat -aisle in [-3,-2,1]:

586 current_group_size = group_size ((

SINGLE_PRINGLE_COEFFICIENT ,COUPLES_COEFFIENCT ,THREESOME_COEFFICIENT))

587 elif seat -aisle in [-1,2]:

588 current_group_size = group_size ((

SINGLE_PRINGLE_COEFFICIENT ,COUPLES_COEFFIENCT ,0))

589 elif seat == 6:

590 current_group_size = 1

591

592 current_group_member = 0

593 boardingQueue.append ([])

594

595 break

Page 71 of 77 2022019

596

597

598

599 random.shuffle(boardingQueue)

600

601 # flatten groups

602

603 boardingQueue = [j for sub in boardingQueue for j in sub]

604

605 #print(boardingQueue)

606

607 boardingQueue = cull_boarding_queue(boardingQueue)

608

609 test_cases.append(board_the_plane(boardingQueue))

610

611 print(’Random with groups: ’, sum(test_cases)/len(test_cases))

612 print(test_cases)

613 return average(test_cases)

614

615

616 # sectional boarding but with groups

617 def section_boarding_with_groups ():

618

619 test_cases = []

620 amf , fma = [],[]

621 for _ in range(N_TEST_CASES):

622

623 aft ,middle ,front = [],[],[]

624

625 # aft section

626 create_boarding_order_for_section_but_with_groups(aft ,middle ,front ,

A_SEC_START ,A_SEC_END)

627 # middle section

628 create_boarding_order_for_section_but_with_groups(middle ,aft ,front ,

M_SEC_START ,M_SEC_END)

629 # front section

630 create_boarding_order_for_section_but_with_groups(front ,middle ,aft ,

F_SEC_START ,F_SEC_END)

631

632

633 random.shuffle(aft)

634 random.shuffle(middle)

635 random.shuffle(front)

636

637

638 #print(boardingQueue)

639 boardingQueue = aft+middle+front

640 boardingQueue = [j for sub in boardingQueue for j in sub]

641 boardingQueue = cull_boarding_queue(boardingQueue)

642 amf.append(board_the_plane(boardingQueue))

643 #boardingQueue = front+middle+aft

644 #boardingQueue = [j for sub in boardingQueue for j in sub]

645 #fma.append(board_the_plane(boardingQueue))

646

647

648 print(’Sectional amf: ’, average(amf))

649 #print(’Sectional fma: ’, average(fma))

650

651 return(average(amf))

652

Page 72 of 77 2022019

653

654

655

656 # boarding by seat but allowing groups to board together

657 def seat_boarding_with_groups ():

658

659 test_cases = []

660 boardingQueue =[]

661 for _ in range(N_TEST_CASES):

662

663 window ,middle ,aisle = [],[],[]

664

665 # window seats

666 #window_seats = [aisle -3 for aisle in AISLES] + [aisle +3 for aisle in

AISLES]

667 #create_boarding_order_for_aisle_but_with_groups(window ,middle ,aisle ,

window_seats)

668 # middle seats

669 middle_seats = [aisle -2 for aisle in AISLES] + [aisle+2 for aisle in

AISLES]

670 create_boarding_order_for_aisle_but_with_groups(middle ,window ,aisle ,

middle_seats)

671 # aisle seats

672 aisle_seats = [aisle -1 for aisle in AISLES] + [aisle +1 for aisle in

AISLES]

673 create_boarding_order_for_aisle_but_with_groups(aisle ,window ,middle ,

aisle_seats)

674

675 random.shuffle(window)

676 random.shuffle(middle)

677 random.shuffle(aisle)

678

679

680 window = [j for sub in window for j in sub]

681 middle = [j for sub in middle for j in sub]

682 aisle = [j for sub in aisle for j in sub]

683

684 boardingQueue1 = window+middle+aisle

685 for x in boardingQueue1:

686 if x not in boardingQueue:

687 boardingQueue.append(x)

688

689 for passenger in boardingQueue:

690 passenger.append(assign_luggage ())

691 passenger.append (0)

692

693 boardingQueue = cull_boarding_queue(boardingQueue)

694 test_cases.append(board_the_plane(boardingQueue))

695

696 print(’By seat with groups: ’, sum(test_cases)/len(test_cases))

697

698 return average(test_cases)

699

700 def prioritize_groups_boarding ():

701

702 test_cases = []

703 for _ in range(N_TEST_CASES):

704 mainBoardingQueue = [[]]

705 priorityQueue =[]

706 boardingQueue =[]

Page 73 of 77 2022019

707 current_group_member =0

708 current_group_size = group_size ((SINGLE_PRINGLE_COEFFICIENT ,

COUPLES_COEFFIENCT ,THREESOME_COEFFICIENT))

709 current_boarding_section = 2

710 for row in range(1,NUM_ROWS +1):

711

712

713 for seat in range(0, NUM_SEATS+len(AISLES)):

714

715 if seat not in AISLES:

716

717 if current_boarding_section == 1:

718 priorityQueue [-1]. append ([row ,seat ,assign_luggage () ,0])

719 else:

720 mainBoardingQueue [-1]. append ([row ,seat ,assign_luggage ()

,0])

721

722 current_group_member += 1

723

724 if current_group_member == current_group_size:

725

726 for aisle in AISLES:

727

728

729 if seat -aisle in [2,3]:

730 if current_boarding_section == 1:

731 priorityQueue [-1]. reverse ()

732 else:

733 mainBoardingQueue [-1]. reverse ()

734

735 if seat -aisle in [-3,-2,1]:

736 current_group_size = group_size ((

SINGLE_PRINGLE_COEFFICIENT ,COUPLES_COEFFIENCT ,THREESOME_COEFFICIENT))

737 elif seat -aisle in [-1,2]:

738 current_group_size = group_size ((

SINGLE_PRINGLE_COEFFICIENT ,COUPLES_COEFFIENCT ,0))

739 elif seat -aisle == 3:

740 current_group_size = 1

741

742

743 break

744

745 current_group_member = 0

746

747 if current_group_size == 3:

748 if random.randrange (100) > 80:

749 mainBoardingQueue.append ([])

750 current_boarding_section = 2

751 else:

752 priorityQueue.append ([])

753 current_boarding_section = 1

754 elif current_group_size == 2:

755 if random.randrange (100) > 20:

756 mainBoardingQueue.append ([])

757 current_boarding_section = 2

758 else:

759 priorityQueue.append ([])

760 current_boarding_section = 1

761 elif current_group_size == 1:

762 if random.randrange (100) > 5:

Page 74 of 77 2022019

763 mainBoardingQueue.append ([])

764 current_boarding_section = 2

765 else:

766 priorityQueue.append ([])

767 current_boarding_section = 1

768

769

770

771 random.shuffle(mainBoardingQueue)

772 random.shuffle(priorityQueue)

773 # flatten groups

774 boardingQueue = priorityQueue +[’b’]+ mainBoardingQueue

775 boardingQueue = [j for sub in boardingQueue for j in sub]

776

777 #print(boardingQueue)

778

779 test_cases.append(board_the_plane(boardingQueue , True))

780

781 print(’Priortizing groups: ’, average(test_cases))

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802 # modified steffen method

803 def steffen_modified_method ():

804

805 test_cases = []

806 for _ in range(N_TEST_CASES):

807

808

809 rightOdd ,leftOdd ,rightEven ,leftEven = [],[],[],[]

810 steffenPerfected = [rightOdd ,leftOdd ,rightEven ,leftEven]

811 # window seats

812 for row in range(1,NUM_ROWS +1):

813 for seat in range(-3,4):

814 #naughty boy

815 if not is_not_disobedient () and seat != 0:

816 steffenPerfected[random.randrange (0,2)]. append ([row ,seat+3,

assign_luggage () ,0])

817

818 elif (seat > 0): #right side

819 steffenPerfected [(row %2) *2]. append ([row ,seat+3, assign_luggage

() ,0])

820 elif (seat < 0): #left side

Page 75 of 77 2022019

821 steffenPerfected [(row %2) *2+1]. append ([row ,seat+3,

assign_luggage () ,0])

822

823

824

825 random.shuffle(steffenPerfected [0])

826 random.shuffle(steffenPerfected [1])

827 random.shuffle(steffenPerfected [2])

828 random.shuffle(steffenPerfected [3])

829

830

831

832 steffenPerfected = [j for sub in steffenPerfected for j in sub]

833 test_cases.append(board_the_plane(steffenPerfected))

834

835 print(’By steffen perefected: ’, sum(test_cases)/len(test_cases))

836

837 return(average(test_cases))

838

839

840

841

842

843

844

845

846

847 plane = ’narrow body’

848

849 if plane == ’narrow body’:

850 NUM_ROWS = 33

851 NUM_SEATS = 6

852 AISLES = [3]

853 F_SEC_START = 1

854 F_SEC_END = 11

855 M_SEC_START = 12

856 M_SEC_END = 22

857 A_SEC_START = 23

858 A_SEC_END = 33

859 elif plane == ’wide wing’:

860 NUM_ROWS = 14

861 NUM_SEATS = 24

862 AISLES = [3,10,17,24]

863 F_SEC_START = 1

864 F_SEC_END = 5

865 M_SEC_START = 6

866 M_SEC_END = 9

867 A_SEC_START = 10

868 A_SEC_END = 14

869 elif plane == ’two entrance two aisle’:

870 # simulating only the back half of the plane

871 NUM_ROWS = 20

872 NUM_SEATS = 7

873 AISLES = [2,6]

874 F_SEC_START = 1

875 F_SEC_END = 7

876 M_SEC_START = 8

877 M_SEC_END = 14

878 A_SEC_START = 15

879 A_SEC_END = 20

Page 76 of 77 2022019

880 elif plane == ’two entrance two aisle first class’:

881 # total loading time for 2E2A plane will be 2E2A + 2E2A first class

882 NUM_ROWS = 3

883 NUM_SEATS = 6

884 AISLES = [2,5]

885

886 # CHANGE THESE FOR SENSITIVITY

887 BAG_COEFFICIENT = (20 ,80 ,10)

888 NAUGHTY_BOY_COEFFICIENT = 0.18

889 COVID_CAPACITY = 0.5 #0, 0.3 0.5 or 0.7

890

891 N_TEST_CASES = 100

892 VISUALIZER = True

893 TIME_STEP = 0.1

894

895 # all measured in standard units (m,s,m/s etc)

896 AVERAGE_WALKING_SPEED = 0.8

897 AVERAGE_SEAT_PITCH = 0.78

898 TIME_TO_MOVE = AVERAGE_SEAT_PITCH / AVERAGE_WALKING_SPEED

899 FAMILY_TIME_TO_MOVE = 1.3 * TIME_TO_MOVE

900 NON_FAMILY_TIME_TO_MOVE = TIME_TO_MOVE

901 TIME_TO_SIT_OR_STAND = 2.5

902 TIME_TO_MOVE_PAST_SEAT = 2

903 # proportions of group sizes

904 SINGLE_PRINGLE_COEFFICIENT = 70

905 COUPLES_COEFFIENCT = 20

906 THREESOME_COEFFICIENT = 0

907

908 if VISUALIZER: im ,fig = intalize_render ()

909

910 #Data csv

911 import csv

912 fields = []

913 rows = []

914 index = []

915 #Add the indexing

916 for i in range(N_TEST_CASES):

917 index.append(i)

918

919 rows.append(index)

920

921

922

923 # BOARDING METHODS: comment out if not using

924 #random_boarding ()

925 #section_boarding ()

926 #seat_boarding ()

927 #random_boarding_with_groups ()

928 #section_boarding_with_groups ()

929 #seat_boarding_with_groups ()

930 #prioritize_groups_boarding ()

931

932 # steffen methods can only be used with narrow body

933 #steffen_deeznuts ()

934 #steffen_modified_method ()

935

936 #naughty_boy_sensitivity ()

937 #bag_sensitivity ()

938

939 # field names add whatever field names that you are creating data for

Page 77 of 77 2022019

940 fields = [’Index’,’Section ’]

